Nuprl Lemma : partition_wf

[I:Interval]. partition(I) ∈ Type supposing icompact(I)


Proof




Definitions occuring in Statement :  partition: partition(I) icompact: icompact(I) interval: Interval uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a partition: partition(I) prop:
Lemmas referenced :  list_wf real_wf partitions_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[I:Interval].  partition(I)  \mmember{}  Type  supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_55_21
Last ObjectModification: 2015_12_27-PM-11_38_39

Theory : reals


Home Index