Nuprl Lemma : partition_wf
∀[I:Interval]. partition(I) ∈ Type supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition: partition(I)
, 
icompact: icompact(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
partition: partition(I)
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
real_wf, 
partitions_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:Interval].  partition(I)  \mmember{}  Type  supposing  icompact(I)
Date html generated:
2016_05_18-AM-08_55_21
Last ObjectModification:
2015_12_27-PM-11_38_39
Theory : reals
Home
Index