Nuprl Lemma : full-partition_wf

[I:Interval]. ∀[p:partition(I)]. (full-partition(I;p) ∈ ℝ List) supposing icompact(I)


Proof




Definitions occuring in Statement :  full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) interval: Interval real: list: List uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a full-partition: full-partition(I;p) partition: partition(I) prop: icompact: icompact(I) and: P ∧ Q
Lemmas referenced :  cons_wf real_wf left-endpoint_wf append_wf right-endpoint_wf nil_wf partition_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_isectElimination because_Cache setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality productElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[p:partition(I)].  (full-partition(I;p)  \mmember{}  \mBbbR{}  List)  supposing  icompact(I)



Date html generated: 2016_05_18-AM-08_55_49
Last ObjectModification: 2015_12_27-PM-11_38_18

Theory : reals


Home Index