Nuprl Lemma : Riemann-sum-refinement

a,b:ℝ.
  ((a < b)
   (∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. ∀k,n:ℕ+.
        ((partition-mesh([a, b];uniform-partition([a, b];k)) ≤ (mc n))
         (∀m:ℕ+(|Riemann-sum(f;a;b;k) Riemann-sum(f;a;b;m k)| ≤ ((r1/r(n)) (b a)))))))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) continuous: f[x] continuous for x ∈ I uniform-partition: uniform-partition(I;k) partition-mesh: partition-mesh(I;p) rfun: I ⟶ℝ rccint: [l, u] rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: nat_plus: + so_apply: x[s] all: x:A. B[x] implies:  Q apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  label: ...$L... t not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:{A| B[x]} rless: x < y rev_implies:  Q or: P ∨ Q rneq: x ≠ y i-member: r ∈ I top: Top rfun: I ⟶ℝ so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + continuous: f[x] continuous for x ∈ I prop: uimplies: supposing a guard: {T} uall: [x:A]. B[x] iff: ⇐⇒ Q member: t ∈ T cand: c∧ B and: P ∧ Q rccint: [l, u] i-approx: i-approx(I;n) implies:  Q all: x:A. B[x] has-valueall: has-valueall(a) callbyvalueall: callbyvalueall has-value: (a)↓ Riemann-sum: Riemann-sum(f;a;b;k) i-length: |I|
Lemmas referenced :  right_endpoint_rccint_lemma left_endpoint_rccint_lemma value-type-has-value set-value-type int-value-type list_wf valueall-type-has-valueall list-valueall-type real-valueall-type evalall-reduce valueall-type-real-list full-partition-non-dec mul_nat_plus default-partition-choice_wf full-partition_wf uniform-partition-refines uniform-partition-increasing rccint-icompact rleq_weakening_rless partition-refinement-sum rccint_wf uniform-partition_wf nat_plus_wf rleq_wf partition-mesh_wf less_than_wf icompact_wf i-approx_wf all_wf sq_exists_wf real_wf rless_wf int-to-real_wf i-member_wf rabs_wf rsub_wf member_rccint_lemma and_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf continuous_wf subtype_rel_self rfun_wf
Rules used in proof :  setEquality computeAll intEquality int_eqEquality dependent_pairFormation unionElimination inrFormation rename setElimination voidEquality voidElimination isect_memberEquality functionEquality productEquality lambdaEquality baseClosed imageMemberEquality introduction natural_numberEquality dependent_set_memberEquality applyEquality because_Cache independent_pairFormation independent_isectElimination isectElimination hypothesis independent_functionElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution lemma_by_obid sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution multiplyEquality equalitySymmetry equalityTransitivity equalityEquality callbyvalueReduce

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].  \mforall{}k,n:\mBbbN{}\msupplus{}.
                ((partition-mesh([a,  b];uniform-partition([a,  b];k))  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}.  (|Riemann-sum(f;a;b;k)  -  Riemann-sum(f;a;b;m  *  k)|  \mleq{}  ((r1/r(n))  *  (b  -  a)))))))



Date html generated: 2016_05_18-AM-10_40_56
Last ObjectModification: 2016_01_17-AM-00_21_13

Theory : reals


Home Index