Nuprl Lemma : Riemann-sum-refinement
∀a,b:ℝ.
  ((a < b)
  
⇒ (∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b]. ∀k,n:ℕ+.
        ((partition-mesh([a, b];uniform-partition([a, b];k)) ≤ (mc 1 n))
        
⇒ (∀m:ℕ+. (|Riemann-sum(f;a;b;k) - Riemann-sum(f;a;b;m * k)| ≤ ((r1/r(n)) * (b - a)))))))
Proof
Definitions occuring in Statement : 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
continuous: f[x] continuous for x ∈ I
, 
uniform-partition: uniform-partition(I;k)
, 
partition-mesh: partition-mesh(I;p)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
label: ...$L... t
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
sq_exists: ∃x:{A| B[x]}
, 
rless: x < y
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
i-member: r ∈ I
, 
top: Top
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
continuous: f[x] continuous for x ∈ I
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
rccint: [l, u]
, 
i-approx: i-approx(I;n)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
has-valueall: has-valueall(a)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
i-length: |I|
Lemmas referenced : 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
value-type-has-value, 
set-value-type, 
int-value-type, 
list_wf, 
valueall-type-has-valueall, 
list-valueall-type, 
real-valueall-type, 
evalall-reduce, 
valueall-type-real-list, 
full-partition-non-dec, 
mul_nat_plus, 
default-partition-choice_wf, 
full-partition_wf, 
uniform-partition-refines, 
uniform-partition-increasing, 
rccint-icompact, 
rleq_weakening_rless, 
partition-refinement-sum, 
rccint_wf, 
uniform-partition_wf, 
nat_plus_wf, 
rleq_wf, 
partition-mesh_wf, 
less_than_wf, 
icompact_wf, 
i-approx_wf, 
all_wf, 
sq_exists_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
i-member_wf, 
rabs_wf, 
rsub_wf, 
member_rccint_lemma, 
and_wf, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
continuous_wf, 
subtype_rel_self, 
rfun_wf
Rules used in proof : 
setEquality, 
computeAll, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
inrFormation, 
rename, 
setElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
functionEquality, 
productEquality, 
lambdaEquality, 
baseClosed, 
imageMemberEquality, 
introduction, 
natural_numberEquality, 
dependent_set_memberEquality, 
applyEquality, 
because_Cache, 
independent_pairFormation, 
independent_isectElimination, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
multiplyEquality, 
equalitySymmetry, 
equalityTransitivity, 
equalityEquality, 
callbyvalueReduce
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].  \mforall{}k,n:\mBbbN{}\msupplus{}.
                ((partition-mesh([a,  b];uniform-partition([a,  b];k))  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}.  (|Riemann-sum(f;a;b;k)  -  Riemann-sum(f;a;b;m  *  k)|  \mleq{}  ((r1/r(n))  *  (b  -  a)))))))
Date html generated:
2016_05_18-AM-10_40_56
Last ObjectModification:
2016_01_17-AM-00_21_13
Theory : reals
Home
Index