Nuprl Lemma : uniform-partition-increasing
∀a,b:ℝ.  ((a < b) 
⇒ (∀k:ℕ+. frs-increasing(uniform-partition([a, b];k))))
Proof
Definitions occuring in Statement : 
uniform-partition: uniform-partition(I;k)
, 
frs-increasing: frs-increasing(p)
, 
rccint: [l, u]
, 
rless: x < y
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
frs-increasing: frs-increasing(p)
, 
uniform-partition: uniform-partition(I;k)
, 
top: Top
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
partition: partition(I)
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
rneq: x ≠ y
, 
rev_implies: P 
⇐ Q
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
true: True
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
Lemmas referenced : 
rccint-icompact, 
rleq_weakening_rless, 
nat_plus_wf, 
rless_wf, 
real_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
less_than_wf, 
int_seg_wf, 
length_wf, 
uniform-partition_wf, 
rccint_wf, 
partition_wf, 
subtract_wf, 
int_seg_properties, 
mklist_wf, 
nat_plus_properties, 
sq_stable__less_than, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
rdiv_wf, 
radd_wf, 
rmul_wf, 
rsub_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
mklist_length, 
squash_wf, 
true_wf, 
mklist_select, 
iff_weakening_equal, 
rmul_preserves_rless, 
rminus_wf, 
rinv_wf2, 
itermAdd_wf, 
int_term_value_add_lemma, 
rless-implies-rless, 
real_term_polynomial, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rless_functionality, 
itermMultiply_wf, 
itermMinus_wf, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
req_weakening, 
rmul-rinv3, 
rminus_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
dependent_set_memberEquality, 
functionEquality, 
intEquality, 
because_Cache, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}a,b:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}\msupplus{}.  frs-increasing(uniform-partition([a,  b];k))))
Date html generated:
2017_10_03-AM-09_46_57
Last ObjectModification:
2017_07_28-AM-07_59_59
Theory : reals
Home
Index