Nuprl Lemma : uniform-partition-increasing

a,b:ℝ.  ((a < b)  (∀k:ℕ+frs-increasing(uniform-partition([a, b];k))))


Proof




Definitions occuring in Statement :  uniform-partition: uniform-partition(I;k) frs-increasing: frs-increasing(p) rccint: [l, u] rless: x < y real: nat_plus: + all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: frs-increasing: frs-increasing(p) uniform-partition: uniform-partition(I;k) top: Top int_seg: {i..j-} subtype_rel: A ⊆B partition: partition(I) nat: nat_plus: + rless: x < y sq_exists: x:{A| B[x]} real: sq_stable: SqStable(P) squash: T decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A rneq: x ≠ y rev_implies:  Q lelt: i ≤ j < k le: A ≤ B true: True itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) rdiv: (x/y)
Lemmas referenced :  rccint-icompact rleq_weakening_rless nat_plus_wf rless_wf real_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma less_than_wf int_seg_wf length_wf uniform-partition_wf rccint_wf partition_wf subtract_wf int_seg_properties mklist_wf nat_plus_properties sq_stable__less_than decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rdiv_wf radd_wf rmul_wf rsub_wf int-to-real_wf rless-int decidable__lt mklist_length squash_wf true_wf mklist_select iff_weakening_equal rmul_preserves_rless rminus_wf rinv_wf2 itermAdd_wf int_term_value_add_lemma rless-implies-rless real_term_polynomial real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma req-iff-rsub-is-0 rless_functionality itermMultiply_wf itermMinus_wf real_term_value_mul_lemma real_term_value_add_lemma real_term_value_minus_lemma req_transitivity radd_functionality rmul_functionality req_weakening rmul-rinv3 rminus_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis isectElimination independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality setElimination rename natural_numberEquality applyEquality lambdaEquality dependent_set_memberEquality functionEquality intEquality because_Cache addEquality imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll inrFormation equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}a,b:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}\msupplus{}.  frs-increasing(uniform-partition([a,  b];k))))



Date html generated: 2017_10_03-AM-09_46_57
Last ObjectModification: 2017_07_28-AM-07_59_59

Theory : reals


Home Index