Nuprl Lemma : uniform-partition-refines

a:ℝ. ∀b:{b:ℝa ≤ b} . ∀k,m:ℕ+.  uniform-partition([a, b];m k) refines uniform-partition([a, b];k)


Proof




Definitions occuring in Statement :  partition-refines: refines Q uniform-partition: uniform-partition(I;k) rccint: [l, u] rleq: x ≤ y real: nat_plus: + all: x:A. B[x] set: {x:A| B[x]}  multiply: m
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T partition-refines: refines Q frs-refines: frs-refines(p;q) l_all: (∀x∈L.P[x]) uniform-partition: uniform-partition(I;k) top: Top nat: nat_plus: + guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: int_seg: {i..j-} i-finite: i-finite(I) rccint: [l, u] isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True rneq: x ≠ y rev_implies:  Q lelt: i ≤ j < k subtype_rel: A ⊆B real: partition: partition(I) so_lambda: λ2x.t[x] so_apply: x[s] l_exists: (∃x∈L. P[x]) le: A ≤ B uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) less_than: a < b cand: c∧ B rless: x < y sq_exists: x:{A| B[x]} rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2
Lemmas referenced :  rccint-icompact sq_stable__rleq mklist_length subtract_wf int_seg_properties length_wf nat_plus_wf mklist_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf rdiv_wf radd_wf rmul_wf rsub_wf int-to-real_wf left-endpoint_wf rccint_wf right-endpoint_wf rless-int decidable__lt rless_wf real_wf int_seg_wf uniform-partition_wf partition_wf set_wf rleq_wf mul_preserves_le itermAdd_wf int_term_value_add_lemma mul_preserves_lt itermMultiply_wf int_term_value_mul_lemma lelt_wf req_wf select_wf multiply-is-int-iff int_subtype_base false_wf not-lt-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes mul-distributes-right mul-commutes mul-associates one-mul less-iff-le mul-distributes zero-add add_functionality_wrt_le add-zero le-add-cancel less_than_wf left_endpoint_rccint_lemma right_endpoint_rccint_lemma squash_wf true_wf mklist_select iff_weakening_equal rmul-is-positive subtract-add-cancel rmul_preserves_req rminus_wf rinv_wf2 req_weakening req_functionality rdiv_functionality radd_functionality rmul_functionality req_inversion rmul-int rsub_functionality req_transitivity real_term_polynomial itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rmul-rinv3 rminus_functionality rinv-of-rmul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename hypothesis productElimination independent_functionElimination isectElimination sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality functionEquality intEquality because_Cache unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality independent_pairFormation computeAll addEquality inrFormation applyEquality multiplyEquality baseApply closedConclusion minusEquality equalityTransitivity equalitySymmetry universeEquality inlFormation

Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}k,m:\mBbbN{}\msupplus{}.    uniform-partition([a,  b];m  *  k)  refines  uniform-partition([a,  b];k\000C)



Date html generated: 2017_10_03-AM-09_46_40
Last ObjectModification: 2017_07_28-AM-07_59_45

Theory : reals


Home Index