Nuprl Lemma : partition-refinement-sum

I:Interval
  (icompact(I)
   (∀f:I ⟶ℝ. ∀mc:f[x] continuous for x ∈ I. ∀q:partition(I). ∀n:ℕ+.
        ((partition-mesh(I;q) ≤ (mc n))
         frs-increasing(q)
         (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)). ∀y:partition-choice(full-partition(I;q)).
              (p refines q
               (|partition-sum(f;y;full-partition(I;q)) partition-sum(f;x;full-partition(I;p))| ≤ ((r1/r(n))
                 |I|)))))))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I partition-refines: refines Q partition-sum: partition-sum(f;x;p) partition-choice: partition-choice(p) partition-mesh: partition-mesh(I;p) full-partition: full-partition(I;p) partition: partition(I) frs-increasing: frs-increasing(p) icompact: icompact(I) rfun: I ⟶ℝ i-length: |I| interval: Interval rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y rmul: b int-to-real: r(n) nat_plus: + so_apply: x[s] all: x:A. B[x] implies:  Q apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T continuous: f[x] continuous for x ∈ I squash: T uall: [x:A]. B[x] prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] rfun: I ⟶ℝ nat_plus: + rneq: x ≠ y or: P ∨ Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top cand: c∧ B label: ...$L... t nat: ge: i ≥  rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B int_seg: {i..j-} lelt: i ≤ j < k partition: partition(I) less_than: a < b less_than': less_than'(a;b) subinterval: I ⊆  icompact: icompact(I) cons: [a b] full-partition: full-partition(I;p) partition-choice: partition-choice(p) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] subtract: m select: L[n] rbetween: x≤y≤z sq_stable: SqStable(P) partition-sum: partition-sum(f;x;p) sq_type: SQType(T) i-length: |I| uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y pointwise-req: x[k] y[k] for k ∈ [n,m] frs-non-dec: frs-non-dec(L) rsub: y pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] int_upper: {i...} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b l_all: (∀x∈L.P[x]) frs-increasing: frs-increasing(p) nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] left-endpoint: left-endpoint(I) endpoints: endpoints(I) rccint: [l, u] outl: outl(x) pi1: fst(t) right-endpoint: right-endpoint(I) pi2: snd(t)
Lemmas referenced :  rmul-distrib radd_functionality_wrt_rleq r-triangle-inequality rminus-as-rmul rminus-radd radd-assoc subtype_rel-equal req_transitivity partition-sum_functionality select-cons-hd rsum-shift rsum-split req_wf le-add-cancel add-zero add_functionality_wrt_le minus-one-mul-top minus-one-mul minus-add condition-implies-le not-lt-2 cons_neq_nil equal-wf-base rsum-split-shift int_seg_cases subtype_rel_self left_endpoint_rccint_lemma list_ind_cons_lemma subtype_rel_dep_function partition-choice-subtype is-partition-choice_wf int_seg_subtype_nat right_endpoint_rccint_lemma select0 partition-refines-cons base_wf stuck-spread le_weakening2 sq_stable__less_than add-subtract-cancel list_wf and_wf zero-add add-commutes add-swap add-associates add-member-int_seg2 rcc-subinterval rccint-icompact icompact-endpoints partition-point-member partition-split-cons-mesh assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf select-append select-cons-tl rsum-telescopes length-nil length-singleton add_functionality_wrt_eq add_nat_plus length-append top_wf subtype_rel_list length_append length_cons non_neg_length length_nil cons_wf append_wf add_nat_wf rsum_linearity2 rleq_weakening rleq_transitivity rmul_functionality_wrt_rleq2 zero-rleq-rabs i-member-diff-bound partition-mesh-nil sq_stable__i-member rccint_wf rsum_functionality_wrt_rleq radd-zero-both radd-rminus-both radd_functionality radd-ac radd_comm uiff_transitivity rminus_wf radd_wf radd-preserves-rleq full-partition-non-dec rmul_functionality rabs-rmul rmul-rsub-distrib rabs-of-nonneg equal_wf set_wf rsum_functionality rleq_weakening_equal rabs-rsum rleq_functionality_wrt_implies rsum_linearity-rsub partition-choice-member req_inversion subtract-is-int-iff add-is-int-iff select_wf constant-partition-sum rsub_functionality rabs_functionality rleq_functionality rsum_wf rsum-single req_functionality req_weakening int_subtype_base set_subtype_base subtype_base_sq member_wf partitions_wf nil_wf sq_stable__rleq right-endpoint_wf left-endpoint_wf i-member-compact length_of_nil_lemma member_rccint_lemma list_ind_nil_lemma length_of_cons_lemma product_subtype_list list-cases length_wf_nat nat_wf int_term_value_add_lemma itermAdd_wf int_formula_prop_eq_lemma intformeq_wf lelt_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma itermSubtract_wf subtract_wf decidable__le rfun_subtype int_seg_wf subinterval_wf length_wf le_wf partition-mesh_wf frs-increasing_wf partition_wf full-partition_wf partition-choice_wf partition-refines_wf less_than_irreflexivity less_than_transitivity1 partition-sum_wf i-length_wf int_seg_properties rmul_wf less_than'_wf less_than_wf ge_wf int_formula_prop_le_lemma intformle_wf nat_properties interval_wf rfun_wf continuous_wf nat_plus_wf subtype_rel_sets rless_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int int-to-real_wf rdiv_wf real_wf rsub_wf rabs_wf rleq_wf i-member_wf sq_exists_wf all_wf i-approx_wf iff_weakening_equal i-approx-of-compact true_wf squash_wf icompact_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution applyEquality hypothesisEquality dependent_set_memberEquality thin lambdaEquality imageElimination lemma_by_obid isectElimination because_Cache hypothesis dependent_functionElimination independent_functionElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination productEquality functionEquality universeEquality setElimination rename inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll setEquality introduction intWeakElimination independent_pairEquality minusEquality axiomEquality hypothesis_subsumption addEquality promote_hyp equalityElimination substitution instantiate equalityEquality pointwiseFunctionality baseApply closedConclusion inlFormation cumulativity

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  I.  \mforall{}q:partition(I).  \mforall{}n:\mBbbN{}\msupplus{}.
                ((partition-mesh(I;q)  \mleq{}  (mc  1  n))
                {}\mRightarrow{}  frs-increasing(q)
                {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).
                        \mforall{}y:partition-choice(full-partition(I;q)).
                            (p  refines  q
                            {}\mRightarrow{}  (|partition-sum(f;y;full-partition(I;q)) 
                                  -  partition-sum(f;x;full-partition(I;p))|  \mleq{}  ((r1/r(n))  *  |I|)))))))



Date html generated: 2016_05_18-AM-10_38_53
Last ObjectModification: 2016_01_17-AM-00_58_14

Theory : reals


Home Index