Nuprl Lemma : rfun_subtype
∀[I,J:Interval]. I ⟶ℝ ⊆r J ⟶ℝ supposing J ⊆ I
Proof
Definitions occuring in Statement :
subinterval: I ⊆ J
,
rfun: I ⟶ℝ
,
interval: Interval
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
rfun: I ⟶ℝ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subinterval: I ⊆ J
Lemmas referenced :
subtype_rel_dep_function,
real_wf,
i-member_wf,
subtype_rel_sets,
subtype_rel_self,
set_wf,
subinterval_wf,
interval_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setEquality,
hypothesis,
hypothesisEquality,
lambdaEquality,
independent_isectElimination,
because_Cache,
setElimination,
rename,
lambdaFormation,
dependent_functionElimination,
independent_functionElimination,
axiomEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[I,J:Interval]. I {}\mrightarrow{}\mBbbR{} \msubseteq{}r J {}\mrightarrow{}\mBbbR{} supposing J \msubseteq{} I
Date html generated:
2016_05_18-AM-08_51_29
Last ObjectModification:
2015_12_27-PM-11_42_51
Theory : reals
Home
Index