Nuprl Lemma : partition-choice-subtype

[p:ℝ List]. ({f:ℕ||p|| 1 ⟶ ℝis-partition-choice(p;f)}  ⊆partition-choice(p))


Proof




Definitions occuring in Statement :  partition-choice: partition-choice(p) is-partition-choice: is-partition-choice(p;x) real: length: ||as|| list: List int_seg: {i..j-} subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B partition-choice: partition-choice(p) all: x:A. B[x] top: Top and: P ∧ Q cand: c∧ B is-partition-choice: is-partition-choice(p;x) int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: less_than: a < b squash: T uiff: uiff(P;Q)
Lemmas referenced :  list_wf is-partition-choice_wf int_seg_wf int_term_value_add_lemma itermAdd_wf false_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermSubtract_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf subtract_wf int_seg_properties real_wf select_wf rleq_wf member_rccint_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality setElimination thin rename hypothesisEquality functionExtensionality sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis productElimination independent_pairFormation because_Cache dependent_set_memberEquality applyEquality productEquality isectElimination independent_isectElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed addEquality setEquality functionEquality axiomEquality

Latex:
\mforall{}[p:\mBbbR{}  List].  (\{f:\mBbbN{}||p||  -  1  {}\mrightarrow{}  \mBbbR{}|  is-partition-choice(p;f)\}    \msubseteq{}r  partition-choice(p))



Date html generated: 2016_05_18-AM-09_03_53
Last ObjectModification: 2016_01_17-AM-02_35_20

Theory : reals


Home Index