Nuprl Lemma : rsum-split-shift
∀[k,n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].
  (Σ{x[i] | n≤i≤m} = (Σ{x[i] | n≤i≤k} + Σ{x[k + i + 1] | 0≤i≤m - k + 1})) supposing ((k ≤ m) and (n ≤ k))
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
rsum-shift, 
add-swap, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
real_wf, 
int_seg_wf, 
le_wf, 
rsum-split
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
functionEquality, 
addEquality, 
natural_numberEquality, 
because_Cache, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
instantiate, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].
    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  =  (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}k\}  +  \mSigma{}\{x[k  +  i  +  1]  |  0\mleq{}i\mleq{}m  -  k  +  1\}))  supposing 
          ((k  \mleq{}  m)  and 
          (n  \mleq{}  k))
Date html generated:
2016_05_18-AM-07_45_50
Last ObjectModification:
2016_01_17-AM-02_08_25
Theory : reals
Home
Index