Nuprl Lemma : partition-sum_functionality
∀I:Interval
  (icompact(I)
  
⇒ (∀p:partition(I). ∀q:ℝ List.
        ((||q|| = ||p|| ∈ ℤ)
        
⇒ (∀i:ℕ||q||. (q[i] = p[i]))
        
⇒ (∀f:I ⟶ℝ. ∀x:partition-choice(full-partition(I;p)).
              (S(f;full-partition(I;p)) = S(f;full-partition(I;q)))))))
Proof
Definitions occuring in Statement : 
partition-sum: S(f;p)
, 
partition-choice: partition-choice(p)
, 
full-partition: full-partition(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
cons: [a / b]
, 
select: L[n]
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
rfun: I ⟶ℝ
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
icompact: icompact(I)
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
nat: ℕ
, 
so_apply: x[s]
, 
partition: partition(I)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
sq_type: SQType(T)
, 
prop: ℙ
, 
and: P ∧ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
full-partition: full-partition(I;p)
, 
partition-sum: S(f;p)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rsub_functionality, 
rmul_functionality, 
req_functionality, 
select-append, 
select-cons-tl, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
req_weakening, 
lelt_wf, 
false_wf, 
int_seg_subtype_nat, 
rsub_wf, 
partition-choice-member, 
rmul_wf, 
rsum_functionality, 
nat_wf, 
subtract_wf, 
le_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
top_wf, 
subtype_rel_list, 
length_append, 
length_cons, 
non_neg_length, 
length_nil, 
nat_properties, 
nil_wf, 
right-endpoint_wf, 
append_wf, 
left-endpoint_wf, 
cons_wf, 
interval_wf, 
icompact_wf, 
partition_wf, 
list_wf, 
length_wf, 
equal_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
int_seg_properties, 
real_wf, 
select_wf, 
req_wf, 
int_seg_wf, 
all_wf, 
rfun_wf, 
full-partition_wf, 
partition-choice_wf, 
int_subtype_base, 
subtype_base_sq, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
length_of_nil_lemma, 
length-append, 
length_of_cons_lemma
Rules used in proof : 
promote_hyp, 
equalityElimination, 
dependent_set_memberEquality, 
addEquality, 
applyEquality, 
productElimination, 
rename, 
setElimination, 
cumulativity, 
instantiate, 
independent_pairFormation, 
intEquality, 
hypothesisEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
unionElimination, 
because_Cache, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}q:\mBbbR{}  List.
                ((||q||  =  ||p||)
                {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||q||.  (q[i]  =  p[i]))
                {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}x:partition-choice(full-partition(I;p)).
                            (S(f;full-partition(I;p))  =  S(f;full-partition(I;q)))))))
Date html generated:
2018_05_22-PM-02_07_59
Last ObjectModification:
2018_05_21-AM-00_21_10
Theory : reals
Home
Index