Nuprl Lemma : partition-sum_functionality

I:Interval
  (icompact(I)
   (∀p:partition(I). ∀q:ℝ List.
        ((||q|| ||p|| ∈ ℤ)
         (∀i:ℕ||q||. (q[i] p[i]))
         (∀f:I ⟶ℝ. ∀x:partition-choice(full-partition(I;p)).
              (S(f;full-partition(I;p)) S(f;full-partition(I;q)))))))


Proof




Definitions occuring in Statement :  partition-sum: S(f;p) partition-choice: partition-choice(p) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) rfun: I ⟶ℝ interval: Interval req: y real: select: L[n] length: ||as|| list: List int_seg: {i..j-} all: x:A. B[x] implies:  Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 cons: [a b] select: L[n] less_than': less_than'(a;b) le: A ≤ B rfun: I ⟶ℝ pointwise-req: x[k] y[k] for k ∈ [n,m] icompact: icompact(I) subtype_rel: A ⊆B ge: i ≥  nat: so_apply: x[s] partition: partition(I) lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] guard: {T} sq_type: SQType(T) prop: and: P ∧ Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) uall: [x:A]. B[x] top: Top member: t ∈ T full-partition: full-partition(I;p) partition-sum: S(f;p) implies:  Q all: x:A. B[x]
Lemmas referenced :  rsub_functionality rmul_functionality req_functionality select-append select-cons-tl less_than_wf assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf req_weakening lelt_wf false_wf int_seg_subtype_nat rsub_wf partition-choice-member rmul_wf rsum_functionality nat_wf subtract_wf le_wf int_term_value_subtract_lemma itermSubtract_wf top_wf subtype_rel_list length_append length_cons non_neg_length length_nil nat_properties nil_wf right-endpoint_wf append_wf left-endpoint_wf cons_wf interval_wf icompact_wf partition_wf list_wf length_wf equal_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_le_lemma intformle_wf decidable__le int_seg_properties real_wf select_wf req_wf int_seg_wf all_wf rfun_wf full-partition_wf partition-choice_wf int_subtype_base subtype_base_sq int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int length_of_nil_lemma length-append length_of_cons_lemma
Rules used in proof :  promote_hyp equalityElimination dependent_set_memberEquality addEquality applyEquality productElimination rename setElimination cumulativity instantiate independent_pairFormation intEquality hypothesisEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality equalitySymmetry equalityTransitivity unionElimination because_Cache isectElimination hypothesis voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}q:\mBbbR{}  List.
                ((||q||  =  ||p||)
                {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||q||.  (q[i]  =  p[i]))
                {}\mRightarrow{}  (\mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}x:partition-choice(full-partition(I;p)).
                            (S(f;full-partition(I;p))  =  S(f;full-partition(I;q)))))))



Date html generated: 2018_05_22-PM-02_07_59
Last ObjectModification: 2018_05_21-AM-00_21_10

Theory : reals


Home Index