Nuprl Lemma : partition-choice-member
∀I:Interval
  (icompact(I)
  ⇒ (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)). ∀i:ℕ||full-partition(I;p)|| - 1.  (x i ∈ {x:ℝ| x ∈ I} )\000C))
Proof
Definitions occuring in Statement : 
partition-choice: partition-choice(p), 
full-partition: full-partition(I;p), 
partition: partition(I), 
icompact: icompact(I), 
i-member: r ∈ I, 
interval: Interval, 
real: ℝ, 
length: ||as||, 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
apply: f a, 
subtract: n - m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
partition-choice: partition-choice(p), 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
so_apply: x[s], 
sq_stable: SqStable(P), 
i-member: r ∈ I, 
rccint: [l, u], 
le: A ≤ B, 
subtract: n - m, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
add-member-int_seg2, 
lelt_wf, 
full-partition-point-member, 
i-member-between, 
sq_stable__i-member, 
interval_wf, 
icompact_wf, 
partition_wf, 
partition-choice_wf, 
int_seg_wf, 
equal_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
false_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
intformless_wf, 
subtract-is-int-iff, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_wf, 
subtract_wf, 
int_seg_properties, 
full-partition_wf, 
select_wf, 
rccint_wf, 
i-member_wf, 
real_wf, 
set_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
dependent_set_memberEquality, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
addEquality, 
independent_functionElimination, 
introduction, 
imageMemberEquality
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).  \mforall{}i:\mBbbN{}||full-partition(I;p)||  -  1.
                (x  i  \mmember{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  )))
Date html generated:
2016_05_18-AM-09_04_16
Last ObjectModification:
2016_01_17-AM-02_34_31
Theory : reals
Home
Index