Step * of Lemma partition-choice-member

I:Interval
  (icompact(I)
   (∀p:partition(I). ∀x:partition-choice(full-partition(I;p)). ∀i:ℕ||full-partition(I;p)|| 1.  (x i ∈ {x:ℝx ∈ I} )\000C))
BY
(Auto
   THEN MemTypeCD
   THEN Auto
   THEN Try ((RepUR ``full-partition`` THEN Auto'))
   THEN Unfold `partition-choice` (-2)
   THEN GenConclAtAddr [2]⋅
   THEN Auto
   THEN Try ((RepUR ``full-partition`` THEN Auto'))) }

1
1. Interval@i
2. icompact(I)@i
3. partition(I)@i
4. i:ℕ||full-partition(I;p)|| 1 ⟶ {x:ℝx ∈ [full-partition(I;p)[i], full-partition(I;p)[i 1]]} @i
5. : ℕ||full-partition(I;p)|| 1@i
6. {x:ℝx ∈ [full-partition(I;p)[i], full-partition(I;p)[i 1]]} @i
7. (x i) v ∈ {x:ℝx ∈ [full-partition(I;p)[i], full-partition(I;p)[i 1]]} @i
⊢ v ∈ I


Latex:


Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}x:partition-choice(full-partition(I;p)).  \mforall{}i:\mBbbN{}||full-partition(I;p)||  -  1.
                (x  i  \mmember{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  )))


By


Latex:
(Auto
  THEN  MemTypeCD
  THEN  Auto
  THEN  Try  ((RepUR  ``full-partition``  0  THEN  Auto'))
  THEN  Unfold  `partition-choice`  (-2)
  THEN  GenConclAtAddr  [2]\mcdot{}
  THEN  Auto
  THEN  Try  ((RepUR  ``full-partition``  0  THEN  Auto')))




Home Index