Nuprl Lemma : full-partition-point-member

I:Interval. (icompact(I)  (∀p:partition(I). (∀x∈full-partition(I;p).x ∈ I)))


Proof




Definitions occuring in Statement :  full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) i-member: r ∈ I interval: Interval l_all: (∀x∈L.P[x]) all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q full-partition: full-partition(I;p) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a partition: partition(I) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B prop: icompact: icompact(I)
Lemmas referenced :  l_all_cons real_wf i-member_wf left-endpoint_wf append_wf cons_wf right-endpoint_wf nil_wf icompact-endpoints l_all_append partition-point-member l_all_single equal_wf partition_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality dependent_functionElimination independent_isectElimination setElimination rename because_Cache productElimination independent_functionElimination independent_pairFormation setEquality

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}p:partition(I).  (\mforall{}x\mmember{}full-partition(I;p).x  \mmember{}  I)))



Date html generated: 2017_10_03-AM-09_40_42
Last ObjectModification: 2017_07_28-AM-07_56_07

Theory : reals


Home Index