Nuprl Lemma : full-partition-point-member
∀I:Interval. (icompact(I) 
⇒ (∀p:partition(I). (∀x∈full-partition(I;p).x ∈ I)))
Proof
Definitions occuring in Statement : 
full-partition: full-partition(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
full-partition: full-partition(I;p)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
partition: partition(I)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
icompact: icompact(I)
Lemmas referenced : 
l_all_cons, 
real_wf, 
i-member_wf, 
left-endpoint_wf, 
append_wf, 
cons_wf, 
right-endpoint_wf, 
nil_wf, 
icompact-endpoints, 
l_all_append, 
partition-point-member, 
l_all_single, 
equal_wf, 
partition_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
dependent_functionElimination, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
setEquality
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}p:partition(I).  (\mforall{}x\mmember{}full-partition(I;p).x  \mmember{}  I)))
Date html generated:
2017_10_03-AM-09_40_42
Last ObjectModification:
2017_07_28-AM-07_56_07
Theory : reals
Home
Index