Nuprl Lemma : i-member-between

I:Interval. ∀a,b:ℝ.  ((a ∈ I)  (b ∈ I)  (∀r:ℝ((a ≤ r)  (r ≤ b)  (r ∈ I))))


Proof




Definitions occuring in Statement :  i-member: r ∈ I interval: Interval rleq: x ≤ y real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q interval: Interval i-member: r ∈ I and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] member: t ∈ T guard: {T} uimplies: supposing a true: True prop:
Lemmas referenced :  rleq_transitivity rless_transitivity1 rless_transitivity2 rleq_wf real_wf i-member_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin unionElimination sqequalRule cut hypothesis lemma_by_obid isectElimination hypothesisEquality independent_isectElimination independent_pairFormation dependent_functionElimination independent_functionElimination natural_numberEquality

Latex:
\mforall{}I:Interval.  \mforall{}a,b:\mBbbR{}.    ((a  \mmember{}  I)  {}\mRightarrow{}  (b  \mmember{}  I)  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  ((a  \mleq{}  r)  {}\mRightarrow{}  (r  \mleq{}  b)  {}\mRightarrow{}  (r  \mmember{}  I))))



Date html generated: 2016_05_18-AM-08_41_16
Last ObjectModification: 2015_12_27-PM-11_50_41

Theory : reals


Home Index