Nuprl Lemma : constant-partition-sum

I:Interval
  (icompact(I)  (∀p:partition(I). ∀f:I ⟶ℝ. ∀z:ℝ.  ((z ∈ I)  (S(f;full-partition(I;p)) ((f z) |I|)))))


Proof




Definitions occuring in Statement :  partition-sum: S(f;p) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) rfun: I ⟶ℝ i-member: r ∈ I i-length: |I| interval: Interval req: y rmul: b real: all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q partition-sum: S(f;p) member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a so_lambda: λ2x.t[x] rfun: I ⟶ℝ int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s] full-partition: full-partition(I;p) nat: subtype_rel: A ⊆B ge: i ≥  partition: partition(I) le: A ≤ B less_than': less_than'(a;b) nat_plus: + true: True int_upper: {i...} iff: ⇐⇒ Q rev_implies:  Q select: L[n] cons: [a b] rev_uimplies: rev_uimplies(P;Q) icompact: icompact(I) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b i-length: |I|
Lemmas referenced :  i-member_wf real_wf rfun_wf partition_wf icompact_wf interval_wf rsum_wf subtract_wf length_wf full-partition_wf rmul_wf rsub_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf int_seg_wf i-length_wf req_weakening length_of_cons_lemma add_nat_wf append_wf cons_wf right-endpoint_wf length_nil non_neg_length nil_wf length_cons length_append subtype_rel_list top_wf length-append length_of_nil_lemma le_wf nat_wf nat_properties intformeq_wf int_formula_prop_eq_lemma equal_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties add_functionality_wrt_eq iff_weakening_equal length-singleton req_functionality rsum_linearity2 rmul_functionality rsum-telescopes select-cons-tl select-append squash_wf true_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_subtype_base decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination natural_numberEquality lambdaEquality applyEquality because_Cache dependent_set_memberEquality addEquality setElimination rename productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed applyLambdaEquality independent_functionElimination imageMemberEquality universeEquality equalityElimination instantiate cumulativity

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}z:\mBbbR{}.    ((z  \mmember{}  I)  {}\mRightarrow{}  (S(f;full-partition(I;p))  =  ((f  z)  *  |I|)))))



Date html generated: 2017_10_03-AM-09_45_27
Last ObjectModification: 2017_07_28-AM-07_59_08

Theory : reals


Home Index