Nuprl Lemma : constant-partition-sum
∀I:Interval
  (icompact(I) ⇒ (∀p:partition(I). ∀f:I ⟶ℝ. ∀z:ℝ.  ((z ∈ I) ⇒ (S(f;full-partition(I;p)) = ((f z) * |I|)))))
Proof
Definitions occuring in Statement : 
partition-sum: S(f;p), 
full-partition: full-partition(I;p), 
partition: partition(I), 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
i-length: |I|, 
interval: Interval, 
req: x = y, 
rmul: a * b, 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
lambda: λx.A[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
partition-sum: S(f;p), 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
so_apply: x[s], 
full-partition: full-partition(I;p), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
ge: i ≥ j , 
partition: partition(I), 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
true: True, 
int_upper: {i...}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
select: L[n], 
cons: [a / b], 
rev_uimplies: rev_uimplies(P;Q), 
icompact: icompact(I), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
i-length: |I|
Lemmas referenced : 
i-member_wf, 
real_wf, 
rfun_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
rsum_wf, 
subtract_wf, 
length_wf, 
full-partition_wf, 
rmul_wf, 
rsub_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
add-is-int-iff, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
int_seg_wf, 
i-length_wf, 
req_weakening, 
length_of_cons_lemma, 
add_nat_wf, 
append_wf, 
cons_wf, 
right-endpoint_wf, 
length_nil, 
non_neg_length, 
nil_wf, 
length_cons, 
length_append, 
subtype_rel_list, 
top_wf, 
length-append, 
length_of_nil_lemma, 
le_wf, 
nat_wf, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
add_functionality_wrt_eq, 
iff_weakening_equal, 
length-singleton, 
req_functionality, 
rsum_linearity2, 
rmul_functionality, 
rsum-telescopes, 
select-cons-tl, 
select-append, 
squash_wf, 
true_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int_subtype_base, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyLambdaEquality, 
independent_functionElimination, 
imageMemberEquality, 
universeEquality, 
equalityElimination, 
instantiate, 
cumulativity
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}p:partition(I).  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.  \mforall{}z:\mBbbR{}.    ((z  \mmember{}  I)  {}\mRightarrow{}  (S(f;full-partition(I;p))  =  ((f  z)  *  |I|)))))
Date html generated:
2017_10_03-AM-09_45_27
Last ObjectModification:
2017_07_28-AM-07_59_08
Theory : reals
Home
Index