Nuprl Lemma : partition-refines-cons

I:Interval
  (icompact(I)
   (∀a:ℝ. ∀bs:ℝ List.
        (partitions(I;[a bs])
         (0 < ||bs||  (a < hd(bs)))
         (∀p:partition(I)
              (p refines [a bs]
               (∃q:partition([left-endpoint(I), a])
                   ∃r:partition([a, right-endpoint(I)])
                    (q refines []
                    ∧ refines bs
                    ∧ (∃x:ℝ((x a) ∧ (p (q [x r]) ∈ (ℝ List))))
                    ∧ ||r|| ||q|| < ||p||
                    ∧ (∀x:partition-choice(full-partition(I;p))
                         (is-partition-choice(full-partition([left-endpoint(I), a];q);x)
                         ∧ is-partition-choice(full-partition([a, right-endpoint(I)];r);λi.(x (i ||q|| 1))))))))))))


Proof




Definitions occuring in Statement :  partition-refines: refines Q partition-choice: partition-choice(p) is-partition-choice: is-partition-choice(p;x) full-partition: full-partition(I;p) partition: partition(I) partitions: partitions(I;p) icompact: icompact(I) rccint: [l, u] right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval rless: x < y req: y real: length: ||as|| append: as bs hd: hd(l) cons: [a b] nil: [] list: List less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a lambda: λx.A[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q uimplies: supposing a and: P ∧ Q partition-refines: refines Q frs-refines: frs-refines(p;q) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: guard: {T} uiff: uiff(P;Q) select: L[n] cons: [a b] l_exists: (∃x∈L. P[x]) partition: partition(I) full-partition: full-partition(I;p) subtype_rel: A ⊆B int_iseg: {i...j} so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T true: True iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  icompact: icompact(I) cand: c∧ B nat: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] nil: [] subtract: m frs-non-dec: frs-non-dec(L) sq_stable: SqStable(P) partitions: partitions(I;p) rleq: x ≤ y real: sq_exists: x:A [B[x]] rless: x < y so_apply: x[s1;s2;s3] so_lambda: so_lambda3 append: as bs partition-choice: partition-choice(p) is-partition-choice: is-partition-choice(p;x) i-member: r ∈ I rccint: [l, u] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y endpoints: endpoints(I) left-endpoint: left-endpoint(I)

Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}a:\mBbbR{}.  \mforall{}bs:\mBbbR{}  List.
                (partitions(I;[a  /  bs])
                {}\mRightarrow{}  (0  <  ||bs||  {}\mRightarrow{}  (a  <  hd(bs)))
                {}\mRightarrow{}  (\mforall{}p:partition(I)
                            (p  refines  [a  /  bs]
                            {}\mRightarrow{}  (\mexists{}q:partition([left-endpoint(I),  a])
                                      \mexists{}r:partition([a,  right-endpoint(I)])
                                        (q  refines  []
                                        \mwedge{}  r  refines  bs
                                        \mwedge{}  (\mexists{}x:\mBbbR{}.  ((x  =  a)  \mwedge{}  (p  =  (q  @  [x  /  r]))))
                                        \mwedge{}  ...)))))))



Date html generated: 2020_05_20-AM-11_38_36
Last ObjectModification: 2020_01_03-AM-00_15_56

Theory : reals


Home Index