Nuprl Lemma : partition-refines-cons
∀I:Interval
(icompact(I)
⇒ (∀a:ℝ. ∀bs:ℝ List.
(partitions(I;[a / bs])
⇒ (0 < ||bs||
⇒ (a < hd(bs)))
⇒ (∀p:partition(I)
(p refines [a / bs]
⇒ (∃q:partition([left-endpoint(I), a])
∃r:partition([a, right-endpoint(I)])
(q refines []
∧ r refines bs
∧ (∃x:ℝ. ((x = a) ∧ (p = (q @ [x / r]) ∈ (ℝ List))))
∧ ||r|| + ||q|| < ||p||
∧ (∀x:partition-choice(full-partition(I;p))
(is-partition-choice(full-partition([left-endpoint(I), a];q);x)
∧ is-partition-choice(full-partition([a, right-endpoint(I)];r);λi.(x (i + ||q|| + 1))))))))))))
Proof
Definitions occuring in Statement :
partition-refines: P refines Q
,
partition-choice: partition-choice(p)
,
is-partition-choice: is-partition-choice(p;x)
,
full-partition: full-partition(I;p)
,
partition: partition(I)
,
partitions: partitions(I;p)
,
icompact: icompact(I)
,
rccint: [l, u]
,
right-endpoint: right-endpoint(I)
,
left-endpoint: left-endpoint(I)
,
interval: Interval
,
rless: x < y
,
req: x = y
,
real: ℝ
,
length: ||as||
,
append: as @ bs
,
hd: hd(l)
,
cons: [a / b]
,
nil: []
,
list: T List
,
less_than: a < b
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
lambda: λx.A[x]
,
add: n + m
,
natural_number: $n
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
and: P ∧ Q
,
partition-refines: P refines Q
,
frs-refines: frs-refines(p;q)
,
l_all: (∀x∈L.P[x])
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
nat_plus: ℕ+
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
guard: {T}
,
uiff: uiff(P;Q)
,
select: L[n]
,
cons: [a / b]
,
l_exists: (∃x∈L. P[x])
,
partition: partition(I)
,
full-partition: full-partition(I;p)
,
subtype_rel: A ⊆r B
,
int_iseg: {i...j}
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
less_than: a < b
,
squash: ↓T
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
icompact: icompact(I)
,
cand: A c∧ B
,
nat: ℕ
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
so_apply: x[s1;s2]
,
top: Top
,
so_lambda: λ2x y.t[x; y]
,
nil: []
,
subtract: n - m
,
frs-non-dec: frs-non-dec(L)
,
sq_stable: SqStable(P)
,
partitions: partitions(I;p)
,
rleq: x ≤ y
,
real: ℝ
,
sq_exists: ∃x:A [B[x]]
,
rless: x < y
,
so_apply: x[s1;s2;s3]
,
so_lambda: so_lambda3,
append: as @ bs
,
partition-choice: partition-choice(p)
,
is-partition-choice: is-partition-choice(p;x)
,
i-member: r ∈ I
,
rccint: [l, u]
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
endpoints: endpoints(I)
,
left-endpoint: left-endpoint(I)
Latex:
\mforall{}I:Interval
(icompact(I)
{}\mRightarrow{} (\mforall{}a:\mBbbR{}. \mforall{}bs:\mBbbR{} List.
(partitions(I;[a / bs])
{}\mRightarrow{} (0 < ||bs|| {}\mRightarrow{} (a < hd(bs)))
{}\mRightarrow{} (\mforall{}p:partition(I)
(p refines [a / bs]
{}\mRightarrow{} (\mexists{}q:partition([left-endpoint(I), a])
\mexists{}r:partition([a, right-endpoint(I)])
(q refines []
\mwedge{} r refines bs
\mwedge{} (\mexists{}x:\mBbbR{}. ((x = a) \mwedge{} (p = (q @ [x / r]))))
\mwedge{} ...)))))))
Date html generated:
2020_05_20-AM-11_38_36
Last ObjectModification:
2020_01_03-AM-00_15_56
Theory : reals
Home
Index