Nuprl Lemma : partition-refines_wf
∀I:Interval. ∀P,Q:partition(I).  (P refines Q ∈ ℙ) supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-refines: P refines Q
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
interval: Interval
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
partition-refines: P refines Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
partition: partition(I)
, 
prop: ℙ
Lemmas referenced : 
frs-refines_wf, 
partition_wf, 
icompact_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}I:Interval.  \mforall{}P,Q:partition(I).    (P  refines  Q  \mmember{}  \mBbbP{})  supposing  icompact(I)
Date html generated:
2016_05_18-AM-09_05_33
Last ObjectModification:
2015_12_27-PM-11_32_09
Theory : reals
Home
Index