Nuprl Lemma : partition-refines_wf

I:Interval. ∀P,Q:partition(I).  (P refines Q ∈ ℙsupposing icompact(I)


Proof




Definitions occuring in Statement :  partition-refines: refines Q partition: partition(I) icompact: icompact(I) interval: Interval uimplies: supposing a prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  partition-refines: refines Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] partition: partition(I) prop:
Lemmas referenced :  frs-refines_wf partition_wf icompact_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_isectElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}I:Interval.  \mforall{}P,Q:partition(I).    (P  refines  Q  \mmember{}  \mBbbP{})  supposing  icompact(I)



Date html generated: 2016_05_18-AM-09_05_33
Last ObjectModification: 2015_12_27-PM-11_32_09

Theory : reals


Home Index