Nuprl Lemma : frs-refines_wf
∀[p,q:ℝ List]. (frs-refines(p;q) ∈ ℙ)
Proof
Definitions occuring in Statement :
frs-refines: frs-refines(p;q)
,
real: ℝ
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
frs-refines: frs-refines(p;q)
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
l_all_wf2,
real_wf,
l_exists_wf,
req_wf,
l_member_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
hypothesisEquality,
lambdaEquality,
setElimination,
rename,
setEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[p,q:\mBbbR{} List]. (frs-refines(p;q) \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-08_52_18
Last ObjectModification:
2015_12_27-PM-11_42_08
Theory : reals
Home
Index