Nuprl Lemma : rabs-Riemann-sum

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f:[a, b] ⟶ℝ]. ∀[k:ℕ+].  (|Riemann-sum(f;a;b;k)| ≤ Riemann-sum(λx.|f x|;a;b;k))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y rabs: |x| real: nat_plus: + uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x]
Definitions unfolded in proof :  partition-sum: partition-sum(f;x;p) default-partition-choice: default-partition-choice(p) nat_plus: + uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] false: False not: ¬A le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y squash: T Riemann-sum: Riemann-sum(f;a;b;k) and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] implies:  Q sq_stable: SqStable(P) subtype_rel: A ⊆B rfun: I ⟶ℝ prop: member: t ∈ T uall: [x:A]. B[x] has-value: (a)↓ callbyvalueall: callbyvalueall has-valueall: has-valueall(a) top: Top uiff: uiff(P;Q) less_than: a < b exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k guard: {T} int_seg: {i..j-} rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rsub: y frs-non-dec: frs-non-dec(L)
Lemmas referenced :  equal_wf lelt_wf subtype_rel_list radd-zero-both radd-rminus-both radd_functionality radd-ac radd_comm uiff_transitivity radd-preserves-rleq radd_wf int-to-real_wf rminus_wf full-partition-non-dec rabs-of-nonneg req_weakening rmul_functionality rleq_functionality rleq_weakening_equal rabs-rmul rsum_functionality2 rleq_weakening rabs-rsum rleq_transitivity rleq_functionality_wrt_implies rsum_wf subtract_wf length_wf rmul_wf select_wf int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff subtract-is-int-iff intformless_wf itermAdd_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma false_wf int_seg_wf le_wf list_set_type full-partition_wf full-partition-point-member member_rccint_lemma uniform-partition_wf partition_wf evalall-reduce sq_stable__rleq rabs_wf Riemann-sum_wf rleq_wf subtype_rel_self rfun_wf rccint_wf real_wf i-member_wf rccint-icompact less_than'_wf rsub_wf nat_plus_wf set_wf value-type-has-value set-value-type less_than_wf int-value-type list_wf and_wf valueall-type-has-valueall list-valueall-type set-valueall-type real-valueall-type
Rules used in proof :  equalityEquality lambdaFormation intEquality independent_isectElimination voidElimination isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality minusEquality independent_pairEquality imageElimination baseClosed imageMemberEquality productElimination dependent_functionElimination independent_functionElimination setEquality applyEquality lambdaEquality sqequalRule because_Cache hypothesis dependent_set_memberEquality hypothesisEquality isectElimination sqequalHypSubstitution lemma_by_obid rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution callbyvalueReduce voidEquality closedConclusion baseApply promote_hyp pointwiseFunctionality computeAll independent_pairFormation int_eqEquality dependent_pairFormation unionElimination addEquality productEquality substitution

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    (|Riemann-sum(f;a;b;k)|  \mleq{}  Riemann-sum(\mlambda{}x.|f  x|;a;b;k))



Date html generated: 2016_05_18-AM-10_40_44
Last ObjectModification: 2016_01_17-AM-00_23_26

Theory : reals


Home Index