Nuprl Lemma : rabs-Riemann-sum
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f:[a, b] ⟶ℝ]. ∀[k:ℕ+].  (|Riemann-sum(f;a;b;k)| ≤ Riemann-sum(λx.|f x|;a;b;k))
Proof
Definitions occuring in Statement : 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
rabs: |x|
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
partition-sum: partition-sum(f;x;p)
, 
default-partition-choice: default-partition-choice(p)
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
false: False
, 
not: ¬A
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
squash: ↓T
, 
Riemann-sum: Riemann-sum(f;a;b;k)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
rfun: I ⟶ℝ
, 
prop: ℙ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
top: Top
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
int_seg: {i..j-}
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rsub: x - y
, 
frs-non-dec: frs-non-dec(L)
Lemmas referenced : 
equal_wf, 
lelt_wf, 
subtype_rel_list, 
radd-zero-both, 
radd-rminus-both, 
radd_functionality, 
radd-ac, 
radd_comm, 
uiff_transitivity, 
radd-preserves-rleq, 
radd_wf, 
int-to-real_wf, 
rminus_wf, 
full-partition-non-dec, 
rabs-of-nonneg, 
req_weakening, 
rmul_functionality, 
rleq_functionality, 
rleq_weakening_equal, 
rabs-rmul, 
rsum_functionality2, 
rleq_weakening, 
rabs-rsum, 
rleq_transitivity, 
rleq_functionality_wrt_implies, 
rsum_wf, 
subtract_wf, 
length_wf, 
rmul_wf, 
select_wf, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
add-is-int-iff, 
subtract-is-int-iff, 
intformless_wf, 
itermAdd_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
int_seg_wf, 
le_wf, 
list_set_type, 
full-partition_wf, 
full-partition-point-member, 
member_rccint_lemma, 
uniform-partition_wf, 
partition_wf, 
evalall-reduce, 
sq_stable__rleq, 
rabs_wf, 
Riemann-sum_wf, 
rleq_wf, 
subtype_rel_self, 
rfun_wf, 
rccint_wf, 
real_wf, 
i-member_wf, 
rccint-icompact, 
less_than'_wf, 
rsub_wf, 
nat_plus_wf, 
set_wf, 
value-type-has-value, 
set-value-type, 
less_than_wf, 
int-value-type, 
list_wf, 
and_wf, 
valueall-type-has-valueall, 
list-valueall-type, 
set-valueall-type, 
real-valueall-type
Rules used in proof : 
equalityEquality, 
lambdaFormation, 
intEquality, 
independent_isectElimination, 
voidElimination, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
natural_numberEquality, 
minusEquality, 
independent_pairEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
setEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
callbyvalueReduce, 
voidEquality, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
computeAll, 
independent_pairFormation, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
addEquality, 
productEquality, 
substitution
Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    (|Riemann-sum(f;a;b;k)|  \mleq{}  Riemann-sum(\mlambda{}x.|f  x|;a;b;k))
Date html generated:
2016_05_18-AM-10_40_44
Last ObjectModification:
2016_01_17-AM-00_23_26
Theory : reals
Home
Index