Nuprl Lemma : rmul-nonneg

[x,y:ℝ].  r0 ≤ (x y) supposing ((r0 ≤ x) ∧ (r0 ≤ y)) ∨ ((x ≤ r0) ∧ (y ≤ r0))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: or: P ∨ Q uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rmul_functionality rmul-assoc req_inversion rminus-zero rminus-rminus rmul-one-both rminus_functionality rmul_over_rminus req_transitivity rmul-minus rmul-int rless-int rmul_reverses_rleq_iff rminus_wf rmul_comm req_weakening rmul-zero-both rleq_functionality uiff_transitivity rmul_preserves_rleq2 rleq_wf and_wf or_wf nat_plus_wf real_wf int-to-real_wf rmul_wf rsub_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality hypothesis natural_numberEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination unionElimination independent_isectElimination independent_functionElimination independent_pairFormation imageMemberEquality baseClosed multiplyEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    r0  \mleq{}  (x  *  y)  supposing  ((r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y))  \mvee{}  ((x  \mleq{}  r0)  \mwedge{}  (y  \mleq{}  r0))



Date html generated: 2016_05_18-AM-07_33_32
Last ObjectModification: 2016_01_17-AM-02_01_20

Theory : reals


Home Index