Nuprl Lemma : rmul-nonneg
∀[x,y:ℝ].  r0 ≤ (x * y) supposing ((r0 ≤ x) ∧ (r0 ≤ y)) ∨ ((x ≤ r0) ∧ (y ≤ r0))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul_functionality, 
rmul-assoc, 
req_inversion, 
rminus-zero, 
rminus-rminus, 
rmul-one-both, 
rminus_functionality, 
rmul_over_rminus, 
req_transitivity, 
rmul-minus, 
rmul-int, 
rless-int, 
rmul_reverses_rleq_iff, 
rminus_wf, 
rmul_comm, 
req_weakening, 
rmul-zero-both, 
rleq_functionality, 
uiff_transitivity, 
rmul_preserves_rleq2, 
rleq_wf, 
and_wf, 
or_wf, 
nat_plus_wf, 
real_wf, 
int-to-real_wf, 
rmul_wf, 
rsub_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
natural_numberEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
unionElimination, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
multiplyEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    r0  \mleq{}  (x  *  y)  supposing  ((r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y))  \mvee{}  ((x  \mleq{}  r0)  \mwedge{}  (y  \mleq{}  r0))
Date html generated:
2016_05_18-AM-07_33_32
Last ObjectModification:
2016_01_17-AM-02_01_20
Theory : reals
Home
Index