Nuprl Lemma : rmul_reverses_rleq_iff

[x,y,z:ℝ].  uiff(x ≤ z;(z y) ≤ (x y)) supposing y < r0


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rmul: b int-to-real: r(n) real: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: guard: {T} rneq: x ≠ y or: P ∨ Q rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y label: ...$L... t itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  less_than'_wf rsub_wf rmul_wf real_wf nat_plus_wf rleq_wf rless_wf int-to-real_wf rmul_reverses_rleq rdiv_wf rinv-negative rleq_functionality_wrt_implies rinv_wf2 rleq_weakening_rless rless-implies-rless real_term_polynomial itermSubtract_wf itermConstant_wf itermVar_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rleq_weakening_equal rleq_weakening req_wf req_weakening uiff_transitivity rleq_functionality req_functionality req_inversion rmul-assoc rmul_functionality rmul_comm req_transitivity rmul-ac rmul-rdiv-cancel rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination isect_memberEquality independent_isectElimination lemma_by_obid inlFormation independent_functionElimination computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  \mleq{}  z;(z  *  y)  \mleq{}  (x  *  y))  supposing  y  <  r0



Date html generated: 2017_10_03-AM-08_35_00
Last ObjectModification: 2017_07_28-AM-07_28_45

Theory : reals


Home Index