Nuprl Lemma : rmul_reverses_rleq_iff
∀[x,y,z:ℝ]. uiff(x ≤ z;(z * y) ≤ (x * y)) supposing y < r0
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rless: x < y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
all: ∀x:A. B[x]
,
le: A ≤ B
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
subtype_rel: A ⊆r B
,
real: ℝ
,
prop: ℙ
,
guard: {T}
,
rneq: x ≠ y
,
or: P ∨ Q
,
rdiv: (x/y)
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
label: ...$L... t
,
itermConstant: "const"
,
req_int_terms: t1 ≡ t2
,
top: Top
Lemmas referenced :
less_than'_wf,
rsub_wf,
rmul_wf,
real_wf,
nat_plus_wf,
rleq_wf,
rless_wf,
int-to-real_wf,
rmul_reverses_rleq,
rdiv_wf,
rinv-negative,
rleq_functionality_wrt_implies,
rinv_wf2,
rleq_weakening_rless,
rless-implies-rless,
real_term_polynomial,
itermSubtract_wf,
itermConstant_wf,
itermVar_wf,
itermMultiply_wf,
real_term_value_const_lemma,
real_term_value_sub_lemma,
real_term_value_var_lemma,
real_term_value_mul_lemma,
req-iff-rsub-is-0,
rleq_weakening_equal,
rleq_weakening,
req_wf,
req_weakening,
uiff_transitivity,
rleq_functionality,
req_functionality,
req_inversion,
rmul-assoc,
rmul_functionality,
rmul_comm,
req_transitivity,
rmul-ac,
rmul-rdiv-cancel,
rmul-one-both
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
productElimination,
independent_pairEquality,
because_Cache,
extract_by_obid,
isectElimination,
applyEquality,
hypothesis,
setElimination,
rename,
minusEquality,
natural_numberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
voidElimination,
isect_memberEquality,
independent_isectElimination,
lemma_by_obid,
inlFormation,
independent_functionElimination,
computeAll,
int_eqEquality,
intEquality,
voidEquality
Latex:
\mforall{}[x,y,z:\mBbbR{}]. uiff(x \mleq{} z;(z * y) \mleq{} (x * y)) supposing y < r0
Date html generated:
2017_10_03-AM-08_35_00
Last ObjectModification:
2017_07_28-AM-07_28_45
Theory : reals
Home
Index