Nuprl Lemma : Riemann-sum-rsub

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f,g:[a, b] ⟶ℝ]. ∀[k:ℕ+].
  ((Riemann-sum(f;a;b;k) Riemann-sum(g;a;b;k)) Riemann-sum(λx.((f x) x);a;b;k))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y rsub: y req: y real: nat_plus: + uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x]
Definitions unfolded in proof :  partition-sum: partition-sum(f;x;p) default-partition-choice: default-partition-choice(p) nat_plus: + uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] squash: T Riemann-sum: Riemann-sum(f;a;b;k) and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] implies:  Q sq_stable: SqStable(P) rfun: I ⟶ℝ prop: member: t ∈ T uall: [x:A]. B[x] has-value: (a)↓ callbyvalueall: callbyvalueall has-valueall: has-valueall(a) top: Top pointwise-req: x[k] y[k] for k ∈ [n,m] subtype_rel: A ⊆B uiff: uiff(P;Q) less_than: a < b not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k guard: {T} int_seg: {i..j-} rev_uimplies: rev_uimplies(P;Q) le: A ≤ B rsub: y
Lemmas referenced :  rmul_functionality rminus-as-rmul radd_comm radd-ac radd-assoc rminus-rminus rminus-radd rmul_over_rminus rmul-distrib req_transitivity rminus_functionality radd_functionality uiff_transitivity req_wf radd_wf int-to-real_wf rminus_wf req_weakening rsum_linearity-rsub req_inversion req_functionality rsum_wf subtract_wf length_wf rmul_wf select_wf int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff subtract-is-int-iff intformless_wf itermAdd_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma false_wf int_seg_wf rsum_functionality le_wf list_set_type full-partition_wf full-partition-point-member member_rccint_lemma uniform-partition_wf partition_wf evalall-reduce sq_stable__req rsub_wf Riemann-sum_wf rleq_wf real_wf i-member_wf rccint_wf rccint-icompact req_witness nat_plus_wf rfun_wf set_wf value-type-has-value set-value-type less_than_wf int-value-type list_wf and_wf valueall-type-has-valueall list-valueall-type set-valueall-type real-valueall-type
Rules used in proof :  equalityEquality lambdaFormation equalitySymmetry equalityTransitivity natural_numberEquality intEquality independent_isectElimination isect_memberEquality imageElimination baseClosed imageMemberEquality productElimination dependent_functionElimination independent_functionElimination setEquality applyEquality lambdaEquality sqequalRule because_Cache hypothesis dependent_set_memberEquality hypothesisEquality isectElimination sqequalHypSubstitution lemma_by_obid rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution callbyvalueReduce voidEquality voidElimination closedConclusion baseApply promote_hyp pointwiseFunctionality computeAll independent_pairFormation int_eqEquality dependent_pairFormation unionElimination addEquality productEquality minusEquality

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f,g:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    ((Riemann-sum(f;a;b;k)  -  Riemann-sum(g;a;b;k))  =  Riemann-sum(\mlambda{}x.((f  x)  -  g  x);a;b;k))



Date html generated: 2016_05_18-AM-10_40_10
Last ObjectModification: 2016_01_17-AM-00_22_18

Theory : reals


Home Index