Nuprl Lemma : Riemann-sum-rleq

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[f,g:[a, b] ⟶ℝ]. ∀[k:ℕ+].
  Riemann-sum(f;a;b;k) ≤ Riemann-sum(g;a;b;k) supposing ∀x:ℝ((x ∈ [a, b])  ((f x) ≤ (g x)))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rleq: x ≤ y real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a
Definitions unfolded in proof :  partition-sum: partition-sum(f;x;p) default-partition-choice: default-partition-choice(p) nat_plus: + so_apply: x[s] rfun: I ⟶ℝ so_lambda: λ2x.t[x] real: subtype_rel: A ⊆B false: False not: ¬A le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y squash: T Riemann-sum: Riemann-sum(f;a;b;k) and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] implies:  Q sq_stable: SqStable(P) prop: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] has-value: (a)↓ callbyvalueall: callbyvalueall has-valueall: has-valueall(a) top: Top pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] uiff: uiff(P;Q) less_than: a < b exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k guard: {T} int_seg: {i..j-} rccint: [l, u] i-member: r ∈ I rev_uimplies: rev_uimplies(P;Q) rsub: y frs-non-dec: frs-non-dec(L)
Lemmas referenced :  rmul_preserves_rleq2 lelt_wf subtype_rel_list full-partition-non-dec radd-zero-both radd-rminus-both radd_functionality req_weakening radd-ac radd_comm rleq_functionality uiff_transitivity radd-preserves-rleq radd_wf int-to-real_wf rminus_wf equal_wf rsum_functionality_wrt_rleq subtract_wf length_wf rmul_wf select_wf int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff subtract-is-int-iff intformless_wf itermAdd_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma false_wf int_seg_wf le_wf list_set_type full-partition_wf full-partition-point-member member_rccint_lemma uniform-partition_wf partition_wf evalall-reduce sq_stable__rleq Riemann-sum_wf rleq_wf rccint-icompact less_than'_wf rsub_wf real_wf nat_plus_wf all_wf i-member_wf rccint_wf rfun_wf set_wf value-type-has-value set-value-type less_than_wf int-value-type list_wf and_wf valueall-type-has-valueall list-valueall-type set-valueall-type real-valueall-type
Rules used in proof :  equalityEquality lambdaFormation setEquality intEquality independent_isectElimination voidElimination isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality minusEquality applyEquality independent_pairEquality lambdaEquality imageElimination baseClosed imageMemberEquality sqequalRule productElimination dependent_functionElimination independent_functionElimination because_Cache hypothesis dependent_set_memberEquality hypothesisEquality isectElimination sqequalHypSubstitution lemma_by_obid rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution callbyvalueReduce voidEquality closedConclusion baseApply promote_hyp pointwiseFunctionality computeAll independent_pairFormation int_eqEquality dependent_pairFormation unionElimination addEquality productEquality substitution

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[f,g:[a,  b]  {}\mrightarrow{}\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].
    Riemann-sum(f;a;b;k)  \mleq{}  Riemann-sum(g;a;b;k)  supposing  \mforall{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  {}\mRightarrow{}  ((f  x)  \mleq{}  (g  x)))



Date html generated: 2016_05_18-AM-10_40_28
Last ObjectModification: 2016_01_17-AM-00_22_51

Theory : reals


Home Index