Step
*
of Lemma
Riemann-sum-rleq
∀[a:ℝ]. ∀[b:{b:ℝ| a ≤ b} ]. ∀[f,g:[a, b] ⟶ℝ]. ∀[k:ℕ+].
Riemann-sum(f;a;b;k) ≤ Riemann-sum(g;a;b;k) supposing ∀x:ℝ. ((x ∈ [a, b])
⇒ ((f x) ≤ (g x)))
BY
{ (Auto
THEN DVar `b'⋅
THEN (Unhide THENA Auto)
THEN (Assert icompact([a, b]) BY
EAuto 1)
THEN (Unfold `Riemann-sum` 0 THEN (CallByValueReduce 0 THENA Auto))
THEN (Assert ⌜full-partition([a, b];uniform-partition([a, b];k)) ∈ {x:ℝ| (a ≤ x) ∧ (x ≤ b)} List⌝⋅
THENM ((GenConclAtAddr [2;1] THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN RepUR ``partition-sum default-partition-choice`` 0)
)) }
1
.....assertion.....
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. g : [a, b] ⟶ℝ
6. k : ℕ+
7. ∀x:ℝ. ((x ∈ [a, b])
⇒ ((f x) ≤ (g x)))
8. icompact([a, b])
⊢ full-partition([a, b];uniform-partition([a, b];k)) ∈ {x:ℝ| (a ≤ x) ∧ (x ≤ b)} List
2
1. a : ℝ
2. b : ℝ
3. a ≤ b
4. f : [a, b] ⟶ℝ
5. g : [a, b] ⟶ℝ
6. k : ℕ+
7. ∀x:ℝ. ((x ∈ [a, b])
⇒ ((f x) ≤ (g x)))
8. icompact([a, b])
9. full-partition([a, b];uniform-partition([a, b];k)) ∈ {x:ℝ| (a ≤ x) ∧ (x ≤ b)} List
10. v : {x:ℝ| (a ≤ x) ∧ (x ≤ b)} List@i
11. full-partition([a, b];uniform-partition([a, b];k)) = v ∈ ({x:ℝ| (a ≤ x) ∧ (x ≤ b)} List)@i
⊢ Σ{(f v[i]) * (v[i + 1] - v[i]) | 0≤i≤||v|| - 2} ≤ Σ{(g v[i]) * (v[i + 1] - v[i]) | 0≤i≤||v|| - 2}
Latex:
Latex:
\mforall{}[a:\mBbbR{}]. \mforall{}[b:\{b:\mBbbR{}| a \mleq{} b\} ]. \mforall{}[f,g:[a, b] {}\mrightarrow{}\mBbbR{}]. \mforall{}[k:\mBbbN{}\msupplus{}].
Riemann-sum(f;a;b;k) \mleq{} Riemann-sum(g;a;b;k) supposing \mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} ((f x) \mleq{} (g x)))
By
Latex:
(Auto
THEN DVar `b'\mcdot{}
THEN (Unhide THENA Auto)
THEN (Assert icompact([a, b]) BY
EAuto 1)
THEN (Unfold `Riemann-sum` 0 THEN (CallByValueReduce 0 THENA Auto))
THEN (Assert \mkleeneopen{}full-partition([a, b];uniform-partition([a, b];k)) \mmember{} \{x:\mBbbR{}| (a \mleq{} x) \mwedge{} (x \mleq{} b)\} List\mkleeneclose{}\mcdot{}
THENM ((GenConclAtAddr [2;1] THENA Auto)
THEN (CallByValueReduce 0 THENA Auto)
THEN RepUR ``partition-sum default-partition-choice`` 0)
))
Home
Index