Nuprl Lemma : Riemann-sum-constant

[a:ℝ]. ∀[b:{b:ℝa ≤ b} ]. ∀[c:ℝ]. ∀[k:ℕ+].  (Riemann-sum(λx.c;a;b;k) (c (b a)))


Proof




Definitions occuring in Statement :  Riemann-sum: Riemann-sum(f;a;b;k) rleq: x ≤ y rsub: y req: y rmul: b real: nat_plus: + uall: [x:A]. B[x] set: {x:A| B[x]}  lambda: λx.A[x]
Definitions unfolded in proof :  squash: T implies:  Q sq_stable: SqStable(P) uimplies: supposing a and: P ∧ Q so_apply: x[s] so_lambda: λ2x.t[x] top: Top all: x:A. B[x] rfun: I ⟶ℝ subtype_rel: A ⊆B prop: member: t ∈ T uall: [x:A]. B[x] nat_plus: + has-value: (a)↓ Riemann-sum: Riemann-sum(f;a;b;k) iff: ⇐⇒ Q has-valueall: has-valueall(a) callbyvalueall: callbyvalueall partition-sum: partition-sum(f;x;p) default-partition-choice: default-partition-choice(p) rev_uimplies: rev_uimplies(P;Q) le: A ≤ B uiff: uiff(P;Q) less_than: a < b not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k guard: {T} int_seg: {i..j-} cons: [a b] select: L[n] rev_implies:  Q int_upper: {i...} true: True less_than': less_than'(a;b) ge: i ≥  partition: partition(I) nat: full-partition: full-partition(I;p) sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq int_subtype_base decidable__equal_int select_append_back squash_wf true_wf lelt_wf select-cons-tl rsum-telescopes length_of_cons_lemma right_endpoint_rccint_lemma add_nat_wf append_wf cons_wf nil_wf length_nil non_neg_length length_cons partition_wf length_append subtype_rel_set partitions_wf subtype_rel_list length-append length_of_nil_lemma nat_wf nat_properties intformeq_wf int_formula_prop_eq_lemma add_nat_plus length_wf_nat add_functionality_wrt_eq iff_weakening_equal length-singleton member_wf req_weakening left_endpoint_rccint_lemma req_wf req_functionality rsum_wf subtract_wf length_wf select_wf int_seg_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt add-is-int-iff subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf int_seg_wf rsum_functionality2 rmul-rsub-distrib le_wf full-partition_wf rccint_wf uniform-partition_wf list_wf valueall-type-has-valueall list-valueall-type real-valueall-type evalall-reduce valueall-type-real-list rccint-icompact value-type-has-value set-value-type less_than_wf int-value-type sq_stable__req Riemann-sum_wf rleq_wf top_wf member_rccint_lemma subtype_rel_dep_function real_wf and_wf subtype_rel_self set_wf rmul_wf rsub_wf req_witness nat_plus_wf
Rules used in proof :  imageElimination baseClosed imageMemberEquality independent_functionElimination lambdaFormation because_Cache independent_isectElimination setEquality voidEquality voidElimination isect_memberEquality dependent_functionElimination sqequalRule applyEquality lambdaEquality hypothesis dependent_set_memberEquality hypothesisEquality isectElimination sqequalHypSubstitution lemma_by_obid rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution natural_numberEquality intEquality callbyvalueReduce productElimination equalitySymmetry equalityTransitivity equalityEquality closedConclusion baseApply promote_hyp pointwiseFunctionality computeAll independent_pairFormation int_eqEquality dependent_pairFormation unionElimination addEquality substitution universeEquality instantiate

Latex:
\mforall{}[a:\mBbbR{}].  \mforall{}[b:\{b:\mBbbR{}|  a  \mleq{}  b\}  ].  \mforall{}[c:\mBbbR{}].  \mforall{}[k:\mBbbN{}\msupplus{}].    (Riemann-sum(\mlambda{}x.c;a;b;k)  =  (c  *  (b  -  a)))



Date html generated: 2016_05_18-AM-10_39_54
Last ObjectModification: 2016_01_17-AM-00_24_47

Theory : reals


Home Index