Step
*
of Lemma
Taylor-series-converges
∀a:ℝ. ∀t:{t:ℝ| r0 < t} . ∀F:ℕ ⟶ (a - t, a + t) ⟶ℝ.
  ((∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} .  ((x = y) 
⇒ (F[k;x] = F[k;y])))
  
⇒ infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
  
⇒ (∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t))
  
⇒ lim k→∞.Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} = λx.F[0;x] for x ∈ (a - t, a + t))
BY
{ TACTIC:(Auto THEN (D 0 THENA Auto) THEN D (-1)) }
1
1. a : ℝ
2. t : {t:ℝ| r0 < t} 
3. F : ℕ ⟶ (a - t, a + t) ⟶ℝ
4. ∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} .  ((x = y) 
⇒ (F[k;x] = F[k;y]))
5. infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
6. ∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t)
7. m : ℕ+
8. [%4] : icompact(i-approx((a - t, a + t);m))
⊢ ∀k@0:ℕ+
    ∃N:ℕ+
     ∀x:{x:ℝ| x ∈ i-approx((a - t, a + t);m)} . ∀k:{N...}.
       (|Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} - F[0;x]| ≤ (r1/r(k@0)))
Latex:
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}t:\{t:\mBbbR{}|  r0  <  t\}  .  \mforall{}F:\mBbbN{}  {}\mrightarrow{}  (a  -  t,  a  +  t)  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}k:\mBbbN{}.  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
    {}\mRightarrow{}  infinite-deriv-seq((a  -  t,  a  +  t);i,x.F[i;x])
    {}\mRightarrow{}  (\mforall{}r:\{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  (r  <  t)\} 
                lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (a  -  t,  a  +  t))
    {}\mRightarrow{}  lim  k\mrightarrow{}\minfty{}.\mSigma{}\{(F[i;a]/r((i)!))  *  x  -  a\^{}i  |  0\mleq{}i\mleq{}k\}  =  \mlambda{}x.F[0;x]  for  x  \mmember{}  (a  -  t,  a  +  t))
By
Latex:
TACTIC:(Auto  THEN  (D  0  THENA  Auto)  THEN  D  (-1))
Home
Index