Nuprl Lemma : Taylor-series-converges
∀a:ℝ. ∀t:{t:ℝ| r0 < t} . ∀F:ℕ ⟶ (a - t, a + t) ⟶ℝ.
  ((∀k:ℕ. ∀x,y:{x:ℝ| x ∈ (a - t, a + t)} .  ((x = y) 
⇒ (F[k;x] = F[k;y])))
  
⇒ infinite-deriv-seq((a - t, a + t);i,x.F[i;x])
  
⇒ (∀r:{r:ℝ| (r0 ≤ r) ∧ (r < t)} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (a - t, a + t))
  
⇒ lim k→∞.Σ{(F[i;a]/r((i)!)) * x - a^i | 0≤i≤k} = λx.F[0;x] for x ∈ (a - t, a + t))
Proof
Definitions occuring in Statement : 
infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x])
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
rfun: I ⟶ℝ
, 
rooint: (l, u)
, 
i-member: r ∈ I
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
fact: (n)!
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
iproper: iproper(I)
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
i-finite: i-finite(I)
, 
rooint: (l, u)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
endpoints: endpoints(I)
, 
outl: outl(x)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
subtract: n - m
, 
le: A ≤ B
, 
icompact: icompact(I)
, 
i-nonvoid: i-nonvoid(I)
, 
i-member: r ∈ I
, 
i-approx: i-approx(I;n)
, 
rccint: [l, u]
, 
rneq: x ≠ y
, 
guard: {T}
, 
cand: A c∧ B
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rdiv: (x/y)
, 
int_upper: {i...}
, 
subinterval: I ⊆ J 
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x])
, 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
Lemmas referenced : 
nat_plus_wf, 
icompact_wf, 
i-approx_wf, 
rooint_wf, 
rsub_wf, 
radd_wf, 
rleq_wf, 
int-to-real_wf, 
rless_wf, 
fun-converges-to_wf, 
rmul_wf, 
rnexp_wf, 
rdiv_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
fact_wf, 
rneq-int, 
fact-non-zero, 
i-member_wf, 
istype-nat, 
infinite-deriv-seq_wf, 
subtype_rel_self, 
real_wf, 
req_wf, 
rfun_wf, 
iproper-approx, 
sq_stable__icompact, 
radd-preserves-rless, 
true_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
sq_stable__rless, 
rmul_preserves_rless, 
rless-int, 
rless_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
decidable__lt, 
istype-false, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
istype-less_than, 
iproper_wf, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
trivial-rsub-rless, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
rless-int-fractions2, 
int_term_value_mul_lemma, 
member_rccint_lemma, 
rleq_transitivity, 
rminus_wf, 
radd-preserves-rleq, 
itermMinus_wf, 
rmul_preserves_rleq, 
iff_weakening_uiff, 
rleq_functionality, 
req_weakening, 
real_term_value_minus_lemma, 
r-bound_wf, 
rccint_wf, 
rabs_wf, 
sq_stable__rleq, 
rabs-difference-bound-rleq, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
r-bound-property, 
trivial-rleq-radd, 
rleq-int-fractions2, 
rsub_functionality_wrt_rleq, 
radd_functionality_wrt_rleq, 
rinv_wf2, 
req_transitivity, 
rinv-as-rdiv, 
mul_nat_plus, 
i-approx-is-subinterval, 
istype-int_upper, 
rsum_wf, 
int_seg_subtype_nat, 
member_rooint_lemma, 
trivial-rless-radd, 
rless-implies-rless, 
int_seg_wf, 
subtype_rel_sets_simple, 
int_upper_properties, 
rleq-implies-rleq, 
Taylor-theorem, 
less_than_transitivity1, 
subtype_rel_dep_function, 
nat_wf, 
int_seg_properties, 
rfun_subtype, 
derivative_functionality_wrt_subinterval, 
rcc-subinterval, 
rmin_wf, 
rmax_wf, 
i-member-iff, 
rmin-i-member, 
rmax-i-member, 
Taylor-remainder_wf, 
upper_subtype_nat, 
sq_stable__le, 
le_weakening2, 
rmin_ub, 
rmax_lb, 
mul_bounds_1b, 
req_functionality, 
rabs_functionality, 
req-int-fractions, 
decidable__equal_int, 
rabs-rmul-rleq, 
rmul_comm, 
rmul-int-rdiv, 
rnexp-rleq, 
zero-rleq-rabs, 
rabs-rnexp, 
rsub_functionality, 
rabs-of-nonneg, 
radd_functionality, 
trivial-rsub-rleq, 
rabs-rmul, 
rleq-int-fractions, 
uimplies_transitivity, 
rdiv_functionality, 
radd-int, 
radd-rdiv, 
r-triangle-inequality, 
rabs-difference-symmetry, 
i-approx-monotonic, 
i-member-approx
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
setIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
functionIsType, 
inhabitedIsType, 
productIsType, 
natural_numberEquality, 
lambdaEquality_alt, 
applyEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
functionEquality, 
setEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
closedConclusion, 
minusEquality, 
equalityIsType1, 
inrFormation_alt, 
equalityIsType4, 
intEquality, 
multiplyEquality, 
promote_hyp, 
productEquality, 
applyLambdaEquality, 
baseApply
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}t:\{t:\mBbbR{}|  r0  <  t\}  .  \mforall{}F:\mBbbN{}  {}\mrightarrow{}  (a  -  t,  a  +  t)  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}k:\mBbbN{}.  \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (a  -  t,  a  +  t)\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
    {}\mRightarrow{}  infinite-deriv-seq((a  -  t,  a  +  t);i,x.F[i;x])
    {}\mRightarrow{}  (\mforall{}r:\{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  (r  <  t)\} 
                lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (a  -  t,  a  +  t))
    {}\mRightarrow{}  lim  k\mrightarrow{}\minfty{}.\mSigma{}\{(F[i;a]/r((i)!))  *  x  -  a\^{}i  |  0\mleq{}i\mleq{}k\}  =  \mlambda{}x.F[0;x]  for  x  \mmember{}  (a  -  t,  a  +  t))
Date html generated:
2019_10_30-AM-10_11_33
Last ObjectModification:
2018_11_14-AM-11_40_16
Theory : reals
Home
Index