Nuprl Lemma : rleq-int-fractions
∀[a,b:ℤ]. ∀[c,d:ℕ+].  uiff((r(a)/r(c)) ≤ (r(b)/r(d));(a * d) ≤ (b * c))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rleq: x ≤ y, 
int-to-real: r(n), 
nat_plus: ℕ+, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
multiply: n * m, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
le: A ≤ B, 
nat_plus: ℕ+, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
le_witness_for_triv, 
rleq_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
istype-le, 
nat_plus_wf, 
rmul_preserves_rleq2, 
rleq-int, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
rleq_functionality, 
req_transitivity, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul-int, 
rmul_preserves_rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
inrFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
multiplyEquality, 
independent_pairEquality, 
isectIsTypeImplies
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c,d:\mBbbN{}\msupplus{}].    uiff((r(a)/r(c))  \mleq{}  (r(b)/r(d));(a  *  d)  \mleq{}  (b  *  c))
Date html generated:
2019_10_29-AM-09_58_15
Last ObjectModification:
2019_01_27-PM-07_29_01
Theory : reals
Home
Index