Nuprl Lemma : rleq-int-fractions

[a,b:ℤ]. ∀[c,d:ℕ+].  uiff((r(a)/r(c)) ≤ (r(b)/r(d));(a d) ≤ (b c))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: rleq: x ≤ y rnonneg: rnonneg(x) rdiv: (x/y) req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  le_witness_for_triv rleq_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf istype-le nat_plus_wf rmul_preserves_rleq2 rleq-int decidable__le intformle_wf int_formula_prop_le_lemma rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf rleq_functionality req_transitivity rmul_functionality req_weakening rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rmul-int rmul_preserves_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin productElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination universeIsType hypothesisEquality setElimination rename because_Cache sqequalRule inrFormation_alt dependent_functionElimination independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination functionIsTypeImplies inhabitedIsType multiplyEquality independent_pairEquality isectIsTypeImplies

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c,d:\mBbbN{}\msupplus{}].    uiff((r(a)/r(c))  \mleq{}  (r(b)/r(d));(a  *  d)  \mleq{}  (b  *  c))



Date html generated: 2019_10_29-AM-09_58_15
Last ObjectModification: 2019_01_27-PM-07_29_01

Theory : reals


Home Index