Nuprl Lemma : r-bound_wf
∀[x:ℝ]. (r-bound(x) ∈ ℕ+)
Proof
Definitions occuring in Statement : 
r-bound: r-bound(x)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
top: Top
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
r-bound: r-bound(x)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equal_wf, 
pi1_wf_top, 
int-to-real_wf, 
rabs_wf, 
rleq_wf, 
nat_plus_wf, 
exists_wf, 
real_wf, 
subtype_rel_self, 
integer-bound
Rules used in proof : 
axiomEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
lambdaFormation, 
rename, 
setElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x:\mBbbR{}].  (r-bound(x)  \mmember{}  \mBbbN{}\msupplus{})
Date html generated:
2018_05_22-PM-01_50_31
Last ObjectModification:
2018_05_21-AM-00_09_03
Theory : reals
Home
Index