Nuprl Lemma : r-bound_wf

[x:ℝ]. (r-bound(x) ∈ ℕ+)


Proof




Definitions occuring in Statement :  r-bound: r-bound(x) real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  top: Top implies:  Q prop: exists: x:A. B[x] so_apply: x[s] nat_plus: + so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B r-bound: r-bound(x) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  equal_wf pi1_wf_top int-to-real_wf rabs_wf rleq_wf nat_plus_wf exists_wf real_wf subtype_rel_self integer-bound
Rules used in proof :  axiomEquality independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity voidEquality voidElimination isect_memberEquality independent_pairEquality productElimination lambdaFormation rename setElimination hypothesisEquality lambdaEquality functionEquality isectElimination sqequalHypSubstitution hypothesis extract_by_obid instantiate thin applyEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x:\mBbbR{}].  (r-bound(x)  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2018_05_22-PM-01_50_31
Last ObjectModification: 2018_05_21-AM-00_09_03

Theory : reals


Home Index