Nuprl Lemma : i-approx-monotonic
∀I:Interval. ∀n,m:ℕ+.  ∀x:ℝ. ((x ∈ i-approx(I;n)) ⇒ (x ∈ i-approx(I;m))) supposing n ≤ m
Proof
Definitions occuring in Statement : 
i-approx: i-approx(I;n), 
i-member: r ∈ I, 
interval: Interval, 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
uiff: uiff(P;Q), 
interval: Interval, 
i-approx: i-approx(I;n), 
cand: A c∧ B, 
guard: {T}, 
rneq: x ≠ y, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y
Lemmas referenced : 
radd_functionality_wrt_rleq, 
rsub_functionality_wrt_rleq, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
radd_wf, 
rless_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
rless-int, 
rdiv_wf, 
rsub_wf, 
int-to-real_wf, 
rleq_transitivity, 
member_rccint_lemma, 
interval_wf, 
nat_plus_wf, 
le_wf, 
real_wf, 
i-approx_wf, 
i-member_wf, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
rleq-int-fractions, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermMinus_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
rleq-int, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
minusEquality, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
because_Cache, 
multiplyEquality, 
inrFormation
Latex:
\mforall{}I:Interval.  \mforall{}n,m:\mBbbN{}\msupplus{}.    \mforall{}x:\mBbbR{}.  ((x  \mmember{}  i-approx(I;n))  {}\mRightarrow{}  (x  \mmember{}  i-approx(I;m)))  supposing  n  \mleq{}  m
Date html generated:
2016_05_18-AM-08_39_34
Last ObjectModification:
2016_01_17-AM-02_27_54
Theory : reals
Home
Index