Nuprl Lemma : Taylor-remainder_wf
∀[I:Interval]. ∀[n:ℕ]. ∀[F:ℕn + 1 ⟶ I ⟶ℝ]. ∀[b,a:{a:ℝ| a ∈ I} ].  (Taylor-remainder(I;n;b;a;i,x.F[i;x]) ∈ ℝ)
Proof
Definitions occuring in Statement : 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
label: ...$L... t
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_apply: x[s1;s2]
, 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rsub_wf, 
false_wf, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
i-member_wf, 
Taylor-approx_wf, 
rfun_wf, 
real_wf, 
int_seg_wf, 
set_wf, 
nat_wf, 
interval_wf
Rules used in proof : 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
setEquality, 
because_Cache, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
addEquality, 
dependent_functionElimination, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
sqequalRule, 
rename, 
thin, 
setElimination, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  +  1  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[b,a:\{a:\mBbbR{}|  a  \mmember{}  I\}  ].
    (Taylor-remainder(I;n;b;a;i,x.F[i;x])  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-10_30_14
Last ObjectModification:
2016_01_17-AM-00_23_07
Theory : reals
Home
Index