Nuprl Lemma : Taylor-remainder_wf

[I:Interval]. ∀[n:ℕ]. ∀[F:ℕ1 ⟶ I ⟶ℝ]. ∀[b,a:{a:ℝa ∈ I} ].  (Taylor-remainder(I;n;b;a;i,x.F[i;x]) ∈ ℝ)


Proof




Definitions occuring in Statement :  Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x]) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval real: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] rfun: I ⟶ℝ label: ...$L... t so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s1;s2] Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rsub_wf false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf i-member_wf Taylor-approx_wf rfun_wf real_wf int_seg_wf set_wf nat_wf interval_wf
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality setEquality because_Cache computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination unionElimination addEquality dependent_functionElimination hypothesis lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality hypothesisEquality applyEquality isectElimination sqequalHypSubstitution lemma_by_obid sqequalRule rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  +  1  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[b,a:\{a:\mBbbR{}|  a  \mmember{}  I\}  ].
    (Taylor-remainder(I;n;b;a;i,x.F[i;x])  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-10_30_14
Last ObjectModification: 2016_01_17-AM-00_23_07

Theory : reals


Home Index