Nuprl Lemma : Taylor-remainder_wf
∀[I:Interval]. ∀[n:ℕ]. ∀[F:ℕn + 1 ⟶ I ⟶ℝ]. ∀[b,a:{a:ℝ| a ∈ I} ]. (Taylor-remainder(I;n;b;a;i,x.F[i;x]) ∈ ℝ)
Proof
Definitions occuring in Statement :
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
,
rfun: I ⟶ℝ
,
i-member: r ∈ I
,
interval: Interval
,
real: ℝ
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s1;s2]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
rfun: I ⟶ℝ
,
label: ...$L... t
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
top: Top
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
uimplies: b supposing a
,
or: P ∨ Q
,
decidable: Dec(P)
,
all: ∀x:A. B[x]
,
ge: i ≥ j
,
nat: ℕ
,
prop: ℙ
,
implies: P
⇒ Q
,
not: ¬A
,
false: False
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
and: P ∧ Q
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
so_apply: x[s1;s2]
,
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
rsub_wf,
false_wf,
nat_properties,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
lelt_wf,
i-member_wf,
Taylor-approx_wf,
rfun_wf,
real_wf,
int_seg_wf,
set_wf,
nat_wf,
interval_wf
Rules used in proof :
functionEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
setEquality,
because_Cache,
computeAll,
voidEquality,
voidElimination,
isect_memberEquality,
intEquality,
int_eqEquality,
lambdaEquality,
dependent_pairFormation,
independent_isectElimination,
unionElimination,
addEquality,
dependent_functionElimination,
hypothesis,
lambdaFormation,
independent_pairFormation,
natural_numberEquality,
dependent_set_memberEquality,
hypothesisEquality,
applyEquality,
isectElimination,
sqequalHypSubstitution,
lemma_by_obid,
sqequalRule,
rename,
thin,
setElimination,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[I:Interval]. \mforall{}[n:\mBbbN{}]. \mforall{}[F:\mBbbN{}n + 1 {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}]. \mforall{}[b,a:\{a:\mBbbR{}| a \mmember{} I\} ].
(Taylor-remainder(I;n;b;a;i,x.F[i;x]) \mmember{} \mBbbR{})
Date html generated:
2016_05_18-AM-10_30_14
Last ObjectModification:
2016_01_17-AM-00_23_07
Theory : reals
Home
Index