Nuprl Lemma : Taylor-approx_wf

[I:Interval]. ∀[n:ℕ]. ∀[F:ℕ1 ⟶ I ⟶ℝ]. ∀[a,b:{a:ℝa ∈ I} ].  (Taylor-approx(n;a;b;i,x.F[i;x]) ∈ ℝ)


Proof




Definitions occuring in Statement :  Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval real: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) lelt: i ≤ j < k ge: i ≥  int_seg: {i..j-} rev_implies:  Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a prop: subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2x.t[x] nat: Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rsum_wf rmul_wf rdiv_wf i-member_wf int-to-real_wf fact_wf int_seg_subtype_nat false_wf nat_plus_wf rless-int int_seg_properties nat_properties decidable__lt le_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf rless_wf rnexp_wf rsub_wf int_seg_wf set_wf real_wf rfun_wf nat_wf interval_wf
Rules used in proof :  functionEquality axiomEquality computeAll voidEquality isect_memberEquality intEquality int_eqEquality dependent_pairFormation voidElimination equalitySymmetry equalityTransitivity unionElimination independent_functionElimination productElimination dependent_functionElimination inrFormation lambdaFormation independent_pairFormation independent_isectElimination addEquality dependent_set_memberEquality because_Cache applyEquality lambdaEquality hypothesis hypothesisEquality natural_numberEquality isectElimination sqequalHypSubstitution lemma_by_obid sqequalRule rename thin setElimination cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:Interval].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:\mBbbN{}n  +  1  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  ].
    (Taylor-approx(n;a;b;i,x.F[i;x])  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-10_28_36
Last ObjectModification: 2016_01_17-AM-00_26_40

Theory : reals


Home Index