Nuprl Lemma : Taylor-theorem

I:Interval
  (iproper(I)
   (∀n:ℕ+. ∀F:ℕ2 ⟶ I ⟶ℝ. ∀a,b:{a:ℝa ∈ I} .
        ((∀k:ℕ2. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (F[k;x] F[k;y])))
         finite-deriv-seq(I;n 1;i,x.F[i;x])
         (∀e:ℝ
              ((r0 < e)
               (∃c:ℝ
                   ((rmin(a;b) ≤ c)
                   ∧ (c ≤ rmax(a;b))
                   ∧ (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) (b c^n (F[n 1;c]/r((n)!))) (b a)| ≤ e))))))))


Proof




Definitions occuring in Statement :  Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x]) finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rmin: rmin(x;y) rmax: rmax(x;y) rnexp: x^k1 rsub: y req: y rmul: b int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n fact: (n)!
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q prop: uall: [x:A]. B[x] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B sq_stable: SqStable(P) squash: T rless: x < y sq_exists: x:{A| B[x]} real: subinterval: I ⊆  rsub: y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  Taylor-theorem-case2 rless_wf int-to-real_wf real_wf finite-deriv-seq_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf int_seg_wf decidable__lt lelt_wf i-member_wf all_wf req_wf rfun_wf set_wf nat_plus_wf iproper_wf interval_wf rless-cases rabs_wf rsub_wf Taylor-theorem-case1 nat_plus_subtype_nat rabs-positive-iff rless_functionality req_weakening rabs-difference-symmetry rcc-subinterval rmin_wf rmax_wf rmin-i-member sq_stable__i-member rmax-i-member rleq_wf rmin-rleq rleq-rmax Taylor-remainder_wf rmul_wf rnexp_wf rdiv_wf sq_stable__less_than member_rccint_lemma fact_wf rneq-int fact-non-zero radd_wf rminus_wf rnexp0 req_functionality rnexp_functionality radd-rminus-both rleq_functionality rabs_functionality rsub_functionality rmul_functionality uiff_transitivity radd_functionality rminus_functionality req_transitivity rmul-distrib rmul_over_rminus rmul-zero-both rminus-radd rminus-zero radd-ac radd_comm rmul-int radd-assoc req_inversion rmul-identity1 rmul-distrib2 radd-int radd-zero-both
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination isectElimination natural_numberEquality dependent_set_memberEquality addEquality setElimination rename unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll applyEquality functionExtensionality because_Cache setEquality functionEquality imageMemberEquality baseClosed imageElimination productEquality minusEquality multiplyEquality

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}
                            ((r0  <  e)
                            {}\mRightarrow{}  (\mexists{}c:\mBbbR{}
                                      ((rmin(a;b)  \mleq{}  c)
                                      \mwedge{}  (c  \mleq{}  rmax(a;b))
                                      \mwedge{}  (|Taylor-remainder(I;n;b;a;k,x.F[k;x])  -  (b  -  c\^{}n  *  (F[n  +  1;c]/r((n)!)))
                                          *  (b  -  a)|  \mleq{}  e))))))))



Date html generated: 2017_10_03-PM-00_41_03
Last ObjectModification: 2017_07_28-AM-08_46_16

Theory : reals


Home Index