Nuprl Lemma : Taylor-theorem-case1
∀I:Interval
  (iproper(I)
  
⇒ (∀n:ℕ. ∀F:ℕn + 2 ⟶ I ⟶ℝ. ∀a,b:{a:ℝ| a ∈ I} .
        ((∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (F[k;x] = F[k;y])))
        
⇒ finite-deriv-seq(I;n + 1;i,x.F[i;x])
        
⇒ b - a ≠ r0
        
⇒ (∀e:ℝ
              ((r0 < e)
              
⇒ (∃c:ℝ
                   ((rmin(a;b) ≤ c)
                   ∧ (c ≤ rmax(a;b))
                   ∧ (|Taylor-remainder(I;n;b;a;k,x.F[k;x]) - (b - c^n * (F[n + 1;c]/r((n)!))) * (b - a)| ≤ e))))))))
Proof
Definitions occuring in Statement : 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
fact: (n)!
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
rneq: x ≠ y
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subinterval: I ⊆ J 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermSubtract: left "-" right
, 
rat_term_ind: rat_term_ind, 
rtermDivide: num "/" denom
, 
rtermMultiply: left "*" right
, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
true: True
, 
rtermConstant: "const"
, 
rtermAdd: left "+" right
, 
pi2: snd(t)
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
rdiv: (x/y)
, 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
i-member: r ∈ I
, 
rccint: [l, u]
Lemmas referenced : 
derivative-Taylor-approx, 
Taylor-remainder_wf, 
int_seg_properties, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
istype-le, 
istype-less_than, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
int_seg_wf, 
rless_wf, 
int-to-real_wf, 
rneq_wf, 
rsub_wf, 
finite-deriv-seq_wf, 
req_wf, 
rfun_wf, 
istype-nat, 
iproper_wf, 
interval_wf, 
rcc-subinterval, 
rmin_wf, 
rmax_wf, 
rmin-i-member, 
sq_stable__i-member, 
rmax-i-member, 
rleq_wf, 
rmax_strict_ub, 
rless-implies-rless, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
rmin_strict_lb, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
Rolles-theorem, 
radd_wf, 
Taylor-approx_wf, 
subtype_rel_sets_simple, 
rccint_wf, 
rdiv_wf, 
rmul_wf, 
rnexp_wf, 
fact_wf, 
rless-int, 
function-is-continuous, 
req_functionality, 
rsub_functionality, 
req_weakening, 
rmul_functionality, 
rnexp_functionality, 
rdiv_functionality, 
derivative-sub, 
derivative-const, 
derivative-add, 
derivative_functionality_wrt_subinterval, 
istype-top, 
member_rccint_lemma, 
subtype_rel_dep_function, 
top_wf, 
derivative-rdiv-const, 
derivative-const-mul, 
derivative-id, 
assert-rat-term-eq2, 
rtermSubtract_wf, 
rtermConstant_wf, 
rtermAdd_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
rtermDivide_wf, 
derivative_functionality, 
rmin-max-cases, 
radd-preserves-rless, 
rless_functionality, 
real_term_value_add_lemma, 
rleq_weakening_equal, 
rmin-rleq-rmax, 
radd_functionality, 
Taylor-approx_functionality, 
trivial-Taylor-approx, 
rmul_preserves_req, 
rinv_wf2, 
itermMultiply_wf, 
req_transitivity, 
rmul-rinv, 
real_term_value_mul_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
rabs-neq-zero, 
rabs_wf, 
rmul_preserves_rless, 
rmul-rinv3, 
rneq-int, 
fact-non-zero, 
rmul_preserves_rleq2, 
zero-rleq-rabs, 
rminus_wf, 
itermMinus_wf, 
rleq_functionality, 
rabs_functionality, 
real_term_value_minus_lemma, 
req_inversion, 
rabs-rmul
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
independent_pairFormation, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
addEquality, 
productIsType, 
functionEquality, 
setEquality, 
inhabitedIsType, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
functionIsType, 
setIsType, 
imageMemberEquality, 
baseClosed, 
inlFormation_alt, 
inrFormation_alt, 
applyLambdaEquality, 
closedConclusion, 
productEquality, 
instantiate, 
universeEquality
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  b  -  a  \mneq{}  r0
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}
                            ((r0  <  e)
                            {}\mRightarrow{}  (\mexists{}c:\mBbbR{}
                                      ((rmin(a;b)  \mleq{}  c)
                                      \mwedge{}  (c  \mleq{}  rmax(a;b))
                                      \mwedge{}  (|Taylor-remainder(I;n;b;a;k,x.F[k;x])  -  (b  -  c\^{}n  *  (F[n  +  1;c]/r((n)!)))
                                          *  (b  -  a)|  \mleq{}  e))))))))
Date html generated:
2019_10_30-AM-10_10_34
Last ObjectModification:
2019_04_02-AM-09_42_21
Theory : reals
Home
Index