Nuprl Lemma : derivative-Taylor-approx

I:Interval
  (iproper(I)
   (∀n:ℕ. ∀F:ℕ2 ⟶ I ⟶ℝ. ∀b:{a:ℝa ∈ I} .
        ((∀k:ℕ2. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (F[k;x] F[k;y])))
         finite-deriv-seq(I;n 1;i,x.F[i;x])
         d(Taylor-approx(n;a;b;i,x.F[i;x]))/da = λx.b x^n (F[n 1;x]/r((n)!)) on I)))


Proof




Definitions occuring in Statement :  Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) derivative: d(f[x])/dx = λz.g[z] on I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval rdiv: (x/y) rnexp: x^k1 rsub: y req: y rmul: b int-to-real: r(n) real: fact: (n)! int_seg: {i..j-} nat: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: so_lambda: λ2y.t[x; y] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} nat_plus: + rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  subtract: m bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) rfun-eq: rfun-eq(I;f;g) r-ap: f(x) req_int_terms: t1 ≡ t2 true: True pointwise-req: x[k] y[k] for k ∈ [n,m] less_than: a < b squash: T rdiv: (x/y)
Lemmas referenced :  finite-deriv-seq_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than int_seg_wf req_wf subtype_rel_self real_wf i-member_wf rfun_wf istype-nat iproper_wf interval_wf derivative-rsum istype-false int_upper_wf rmul_wf rdiv_wf int-to-real_wf fact_wf int_seg_subtype_nat rless-int int_seg_properties nat_plus_properties rless_wf rnexp_wf rsub_wf eq_int_wf eqtt_to_assert assert_of_eq_int radd_wf add-member-int_seg2 subtract_wf itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int derivative-mul req_weakening rdiv_functionality req_functionality rmul_functionality rnexp_functionality rsub_functionality derivative-rdiv-const set_subtype_base lelt_wf rnexp_zero_lemma derivative-const itermMultiply_wf req-iff-rsub-is-0 derivative_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_mul_lemma simple-chain-rule riiint_wf derivative-rnexp not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero istype-top subtype_rel_dep_function derivative-sub derivative-id rsum_wf rsum_functionality rneq-int fact-non-zero real_term_value_add_lemma real_term_value_var_lemma fact0_redex_lemma equal_wf squash_wf true_wf istype-universe eq_int_eq_true btrue_wf iff_weakening_equal bfalse_wf bnot_wf assert_elim btrue_neq_bfalse rsum-telescopes add-subtract-cancel rmul_comm rmul-assoc nat_plus_wf less_than_wf fact_unroll lt_int_wf assert_of_lt_int iff_weakening_uiff assert_wf decidable__equal_int int_term_value_mul_lemma mul_bounds_1b add-swap minus-one-mul minus-one-mul-top le-add-cancel2 rneq_functionality rmul-int rinv_wf2 req_inversion rdiv-rdiv req_transitivity rmul-rinv3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt addEquality setElimination rename hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation applyEquality productElimination productIsType because_Cache inhabitedIsType functionIsType functionEquality setEquality setIsType equalityTransitivity equalitySymmetry inrFormation_alt applyLambdaEquality closedConclusion equalityElimination equalityIsType4 baseApply baseClosed promote_hyp instantiate cumulativity equalityIsType1 intEquality minusEquality imageMemberEquality imageElimination universeEquality multiplyEquality

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  d(Taylor-approx(n;a;b;i,x.F[i;x]))/da  =  \mlambda{}x.b  -  x\^{}n  *  (F[n  +  1;x]/r((n)!))  on  I)))



Date html generated: 2019_10_30-AM-10_09_49
Last ObjectModification: 2018_11_12-PM-01_59_29

Theory : reals


Home Index