Nuprl Lemma : derivative-Taylor-approx
∀I:Interval
  (iproper(I)
  
⇒ (∀n:ℕ. ∀F:ℕn + 2 ⟶ I ⟶ℝ. ∀b:{a:ℝ| a ∈ I} .
        ((∀k:ℕn + 2. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (F[k;x] = F[k;y])))
        
⇒ finite-deriv-seq(I;n + 1;i,x.F[i;x])
        
⇒ d(Taylor-approx(n;a;b;i,x.F[i;x]))/da = λx.b - x^n * (F[n + 1;x]/r((n)!)) on I)))
Proof
Definitions occuring in Statement : 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
rdiv: (x/y)
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
fact: (n)!
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
subtract: n - m
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
req_int_terms: t1 ≡ t2
, 
true: True
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
less_than: a < b
, 
squash: ↓T
, 
rdiv: (x/y)
Lemmas referenced : 
finite-deriv-seq_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
int_seg_wf, 
req_wf, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
rfun_wf, 
istype-nat, 
iproper_wf, 
interval_wf, 
derivative-rsum, 
istype-false, 
int_upper_wf, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
fact_wf, 
int_seg_subtype_nat, 
rless-int, 
int_seg_properties, 
nat_plus_properties, 
rless_wf, 
rnexp_wf, 
rsub_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
radd_wf, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
assert-bnot, 
neg_assert_of_eq_int, 
derivative-mul, 
req_weakening, 
rdiv_functionality, 
req_functionality, 
rmul_functionality, 
rnexp_functionality, 
rsub_functionality, 
derivative-rdiv-const, 
set_subtype_base, 
lelt_wf, 
rnexp_zero_lemma, 
derivative-const, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
derivative_functionality, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
simple-chain-rule, 
riiint_wf, 
derivative-rnexp, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
condition-implies-le, 
add-commutes, 
minus-add, 
minus-zero, 
istype-top, 
subtype_rel_dep_function, 
derivative-sub, 
derivative-id, 
rsum_wf, 
rsum_functionality, 
rneq-int, 
fact-non-zero, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
fact0_redex_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
eq_int_eq_true, 
btrue_wf, 
iff_weakening_equal, 
bfalse_wf, 
bnot_wf, 
assert_elim, 
btrue_neq_bfalse, 
rsum-telescopes, 
add-subtract-cancel, 
rmul_comm, 
rmul-assoc, 
nat_plus_wf, 
less_than_wf, 
fact_unroll, 
lt_int_wf, 
assert_of_lt_int, 
iff_weakening_uiff, 
assert_wf, 
decidable__equal_int, 
int_term_value_mul_lemma, 
mul_bounds_1b, 
add-swap, 
minus-one-mul, 
minus-one-mul-top, 
le-add-cancel2, 
rneq_functionality, 
rmul-int, 
rinv_wf2, 
req_inversion, 
rdiv-rdiv, 
req_transitivity, 
rmul-rinv3
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
applyEquality, 
productElimination, 
productIsType, 
because_Cache, 
inhabitedIsType, 
functionIsType, 
functionEquality, 
setEquality, 
setIsType, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation_alt, 
applyLambdaEquality, 
closedConclusion, 
equalityElimination, 
equalityIsType4, 
baseApply, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityIsType1, 
intEquality, 
minusEquality, 
imageMemberEquality, 
imageElimination, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:\mBbbN{}n  +  2  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
                ((\mforall{}k:\mBbbN{}n  +  2.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
                {}\mRightarrow{}  finite-deriv-seq(I;n  +  1;i,x.F[i;x])
                {}\mRightarrow{}  d(Taylor-approx(n;a;b;i,x.F[i;x]))/da  =  \mlambda{}x.b  -  x\^{}n  *  (F[n  +  1;x]/r((n)!))  on  I)))
Date html generated:
2019_10_30-AM-10_09_49
Last ObjectModification:
2018_11_12-PM-01_59_29
Theory : reals
Home
Index