Nuprl Lemma : simple-chain-rule
∀I:Interval. ∀f,f':I ⟶ℝ. ∀g,g':(-∞, ∞) ⟶ℝ.
  (iproper(I)
  
⇒ (∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (f'[x] = f'[y])))
  
⇒ (∀x,y:ℝ.  ((x = y) 
⇒ (g'[x] = g'[y])))
  
⇒ d(f[x])/dx = λx.f'[x] on I
  
⇒ d(g[x])/dx = λx.g'[x] on (-∞, ∞)
  
⇒ d(g[f[x]])/dx = λx.g'[f[x]] * f'[x] on I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
rfun: I ⟶ℝ
, 
riiint: (-∞, ∞)
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
top: Top
, 
true: True
, 
guard: {T}
Lemmas referenced : 
chain-rule, 
riiint_wf, 
iproper-riiint, 
req_wf, 
set_wf, 
real_wf, 
i-member_wf, 
derivative_wf, 
all_wf, 
member_riiint_lemma, 
true_wf, 
iproper_wf, 
rfun_wf, 
interval_wf, 
continuous-maps-compact, 
differentiable-continuous
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
setEquality, 
because_Cache, 
functionEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality
Latex:
\mforall{}I:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g,g':(-\minfty{},  \minfty{})  {}\mrightarrow{}\mBbbR{}.
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[x]  =  f'[y])))
    {}\mRightarrow{}  (\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (g'[x]  =  g'[y])))
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
    {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.g'[x]  on  (-\minfty{},  \minfty{})
    {}\mRightarrow{}  d(g[f[x]])/dx  =  \mlambda{}x.g'[f[x]]  *  f'[x]  on  I)
Date html generated:
2016_10_26-AM-11_30_55
Last ObjectModification:
2016_09_06-AM-10_02_48
Theory : reals
Home
Index