Nuprl Lemma : chain-rule

I,J:Interval. ∀f,f':I ⟶ℝ. ∀g,g':J ⟶ℝ.
  (iproper(J)
   maps-compact(I;J;x.f[x])
   (∀x,y:{x:ℝx ∈ I} .  ((x y)  (f'[x] f'[y])))
   (∀x,y:{x:ℝx ∈ J} .  ((x y)  (g'[x] g'[y])))
   d(f[x])/dx = λx.f'[x] on I
   d(g[x])/dx = λx.g'[x] on J
   d(g[f[x]])/dx = λx.g'[f[x]] f'[x] on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I maps-compact: maps-compact(I;J;x.f[x]) rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval req: y rmul: b real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] uall: [x:A]. B[x] prop: label: ...$L... t
Lemmas referenced :  chain-rule_0 function-proper-continuous i-member_wf real_wf derivative_wf all_wf req_wf maps-compact_wf iproper_wf rfun_wf interval_wf differentiable-continuous
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination because_Cache sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality isectElimination setEquality functionEquality

Latex:
\mforall{}I,J:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g,g':J  {}\mrightarrow{}\mBbbR{}.
    (iproper(J)
    {}\mRightarrow{}  maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[x]  =  f'[y])))
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  J\}  .    ((x  =  y)  {}\mRightarrow{}  (g'[x]  =  g'[y])))
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
    {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.g'[x]  on  J
    {}\mRightarrow{}  d(g[f[x]])/dx  =  \mlambda{}x.g'[f[x]]  *  f'[x]  on  I)



Date html generated: 2016_10_26-AM-11_30_38
Last ObjectModification: 2016_09_05-AM-10_09_21

Theory : reals


Home Index