Nuprl Lemma : chain-rule
∀I,J:Interval. ∀f,f':I ⟶ℝ. ∀g,g':J ⟶ℝ.
  (iproper(J)
  
⇒ maps-compact(I;J;x.f[x])
  
⇒ (∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (f'[x] = f'[y])))
  
⇒ (∀x,y:{x:ℝ| x ∈ J} .  ((x = y) 
⇒ (g'[x] = g'[y])))
  
⇒ d(f[x])/dx = λx.f'[x] on I
  
⇒ d(g[x])/dx = λx.g'[x] on J
  
⇒ d(g[f[x]])/dx = λx.g'[f[x]] * f'[x] on I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
maps-compact: maps-compact(I;J;x.f[x])
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
label: ...$L... t
Lemmas referenced : 
chain-rule_0, 
function-proper-continuous, 
i-member_wf, 
real_wf, 
derivative_wf, 
all_wf, 
req_wf, 
maps-compact_wf, 
iproper_wf, 
rfun_wf, 
interval_wf, 
differentiable-continuous
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
isectElimination, 
setEquality, 
functionEquality
Latex:
\mforall{}I,J:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g,g':J  {}\mrightarrow{}\mBbbR{}.
    (iproper(J)
    {}\mRightarrow{}  maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[x]  =  f'[y])))
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  J\}  .    ((x  =  y)  {}\mRightarrow{}  (g'[x]  =  g'[y])))
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
    {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.g'[x]  on  J
    {}\mRightarrow{}  d(g[f[x]])/dx  =  \mlambda{}x.g'[f[x]]  *  f'[x]  on  I)
Date html generated:
2016_10_26-AM-11_30_38
Last ObjectModification:
2016_09_05-AM-10_09_21
Theory : reals
Home
Index