Nuprl Lemma : function-proper-continuous

I:Interval. ∀f:I ⟶ℝ.
  ((iproper(I)  (∀x,y:{t:ℝt ∈ I} .  ((x y)  (f[x] f[y]))))  f[x] (proper)continuous for x ∈ I)


Proof




Definitions occuring in Statement :  proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval req: y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q proper-continuous: f[x] (proper)continuous for x ∈ I member: t ∈ T uall: [x:A]. B[x] nat_plus: + and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B cand: c∧ B ifun: ifun(f;I) real-fun: real-fun(f;a;b) so_apply: x[s] rfun: I ⟶ℝ so_lambda: λ2x.t[x] subinterval: I ⊆  continuous: f[x] continuous for x ∈ I

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    ((iproper(I)  {}\mRightarrow{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y]))))
    {}\mRightarrow{}  f[x]  (proper)continuous  for  x  \mmember{}  I)



Date html generated: 2020_05_20-PM-00_10_14
Last ObjectModification: 2019_12_18-AM-10_01_08

Theory : reals


Home Index