Nuprl Lemma : chain-rule_0
∀I,J:Interval. ∀f,f':I ⟶ℝ. ∀g,g':J ⟶ℝ.
  (iproper(J)
  
⇒ maps-compact(I;J;x.f[x])
  
⇒ f[x] (proper)continuous for x ∈ I
  
⇒ f'[x] (proper)continuous for x ∈ I
  
⇒ g'[x] (proper)continuous for x ∈ J
  
⇒ d(f[x])/dx = λx.f'[x] on I
  
⇒ d(g[x])/dx = λx.g'[x] on J
  
⇒ d(g[f[x]])/dx = λx.g'[f[x]] * f'[x] on I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
maps-compact: maps-compact(I;J;x.f[x])
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
iproper: iproper(I)
, 
interval: Interval
, 
rmul: a * b
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
label: ...$L... t
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
maps-compact-proper: maps-compact-proper(I;J;x.f[x])
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
and: P ∧ Q
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
sq_exists: ∃x:A [B[x]]
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
cand: A c∧ B
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
rless: x < y
, 
real: ℝ
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
Lemmas referenced : 
proper-maps-compact, 
real_wf, 
i-member_wf, 
derivative_wf, 
proper-continuous_wf, 
maps-compact_wf, 
iproper_wf, 
rfun_wf, 
interval_wf, 
sq_stable__iproper, 
i-approx_wf, 
proper-continuous-implies, 
istype-less_than, 
sq_stable__icompact, 
icompact_wf, 
nat_plus_wf, 
Inorm-bound, 
rfun_subtype, 
i-approx-is-subinterval, 
Inorm_wf, 
rleq_wf, 
rabs_wf, 
i-member-approx, 
r-bound-property, 
mul_nat_plus, 
r-bound_wf, 
subtype_rel_self, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
rleq-int-fractions2, 
sq_stable__and, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
small-reciprocal-real, 
sq_stable__rless, 
le_witness_for_triv, 
rsub_wf, 
rmul_wf, 
rleq_weakening_rless, 
radd_wf, 
sq_stable__less_than, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
radd_functionality_wrt_rleq, 
rmin_wf, 
rmin_strict_ub, 
rmin-rleq, 
implies_weakening_uimplies, 
itermSubtract_wf, 
itermAdd_wf, 
r-triangle-inequality, 
rleq_functionality, 
req_weakening, 
rabs_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rminus_wf, 
itermMinus_wf, 
uimplies_transitivity, 
radd_functionality, 
req_inversion, 
rabs-rmul, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
rleq_weakening, 
iff_weakening_uiff, 
rmul_comm, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
zero-rleq-rabs, 
set_subtype_base, 
less_than_wf, 
rmul_functionality_wrt_rleq2, 
rmul_preserves_rleq2, 
rinv_wf2, 
req_transitivity, 
rinv-mul-as-rdiv, 
radd-non-neg, 
rmul-nonneg-case1, 
rmul_preserves_rleq, 
rneq_functionality, 
rmul-int, 
rmul_functionality, 
rinv_functionality2, 
rinv-of-rmul, 
rmul-rinv3, 
rdiv_functionality, 
radd-preserves-rleq, 
rleq-int, 
rmul-int-rdiv, 
rmul-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
setIsType, 
universeIsType, 
hypothesis, 
isectElimination, 
independent_functionElimination, 
promote_hyp, 
because_Cache, 
inhabitedIsType, 
productElimination, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
productIsType, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
isectIsType, 
closedConclusion, 
independent_pairFormation, 
functionIsType, 
functionEquality, 
setEquality, 
multiplyEquality, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
functionIsTypeImplies, 
addEquality, 
equalityIsType4, 
dependent_set_memberFormation_alt, 
equalityIsType1, 
inlFormation_alt, 
instantiate, 
universeEquality, 
intEquality, 
baseApply
Latex:
\mforall{}I,J:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g,g':J  {}\mrightarrow{}\mBbbR{}.
    (iproper(J)
    {}\mRightarrow{}  maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  f[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  f'[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g'[x]  (proper)continuous  for  x  \mmember{}  J
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
    {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.g'[x]  on  J
    {}\mRightarrow{}  d(g[f[x]])/dx  =  \mlambda{}x.g'[f[x]]  *  f'[x]  on  I)
Date html generated:
2019_10_30-AM-09_06_22
Last ObjectModification:
2018_11_13-AM-11_06_33
Theory : reals
Home
Index