Nuprl Lemma : chain-rule_0

I,J:Interval. ∀f,f':I ⟶ℝ. ∀g,g':J ⟶ℝ.
  (iproper(J)
   maps-compact(I;J;x.f[x])
   f[x] (proper)continuous for x ∈ I
   f'[x] (proper)continuous for x ∈ I
   g'[x] (proper)continuous for x ∈ J
   d(f[x])/dx = λx.f'[x] on I
   d(g[x])/dx = λx.g'[x] on J
   d(g[f[x]])/dx = λx.g'[f[x]] f'[x] on I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I maps-compact: maps-compact(I;J;x.f[x]) proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ iproper: iproper(I) interval: Interval rmul: b so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] uall: [x:A]. B[x] prop: label: ...$L... t derivative: d(f[x])/dx = λz.g[z] on I maps-compact-proper: maps-compact-proper(I;J;x.f[x]) exists: x:A. B[x] sq_stable: SqStable(P) and: P ∧ Q squash: T nat_plus: + subtype_rel: A ⊆B uimplies: supposing a less_than: a < b less_than': less_than'(a;b) true: True guard: {T} rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y sq_exists: x:A [B[x]] proper-continuous: f[x] (proper)continuous for x ∈ I cand: c∧ B rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rless: x < y real: req_int_terms: t1 ≡ t2 rdiv: (x/y)
Lemmas referenced :  proper-maps-compact real_wf i-member_wf derivative_wf proper-continuous_wf maps-compact_wf iproper_wf rfun_wf interval_wf sq_stable__iproper i-approx_wf proper-continuous-implies istype-less_than sq_stable__icompact icompact_wf nat_plus_wf Inorm-bound rfun_subtype i-approx-is-subinterval Inorm_wf rleq_wf rabs_wf i-member-approx r-bound-property mul_nat_plus r-bound_wf subtype_rel_self rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq-int-fractions2 sq_stable__and decidable__le intformle_wf int_formula_prop_le_lemma rleq_functionality_wrt_implies rleq_weakening_equal small-reciprocal-real sq_stable__rless le_witness_for_triv rsub_wf rmul_wf rleq_weakening_rless radd_wf sq_stable__less_than rneq-int intformeq_wf int_formula_prop_eq_lemma int_subtype_base radd_functionality_wrt_rleq rmin_wf rmin_strict_ub rmin-rleq implies_weakening_uimplies itermSubtract_wf itermAdd_wf r-triangle-inequality rleq_functionality req_weakening rabs_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma rminus_wf itermMinus_wf uimplies_transitivity radd_functionality req_inversion rabs-rmul real_term_value_mul_lemma real_term_value_minus_lemma rleq_weakening iff_weakening_uiff rmul_comm squash_wf true_wf iff_weakening_equal zero-rleq-rabs set_subtype_base less_than_wf rmul_functionality_wrt_rleq2 rmul_preserves_rleq2 rinv_wf2 req_transitivity rinv-mul-as-rdiv radd-non-neg rmul-nonneg-case1 rmul_preserves_rleq rneq_functionality rmul-int rmul_functionality rinv_functionality2 rinv-of-rmul rmul-rinv3 rdiv_functionality radd-preserves-rleq rleq-int rmul-int-rdiv rmul-rinv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality setIsType universeIsType hypothesis isectElimination independent_functionElimination promote_hyp because_Cache inhabitedIsType productElimination setElimination rename imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt natural_numberEquality productIsType independent_isectElimination dependent_pairFormation_alt equalityTransitivity equalitySymmetry isectIsType closedConclusion independent_pairFormation functionIsType functionEquality setEquality multiplyEquality inrFormation_alt unionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination functionIsTypeImplies addEquality equalityIsType4 dependent_set_memberFormation_alt equalityIsType1 inlFormation_alt instantiate universeEquality intEquality baseApply

Latex:
\mforall{}I,J:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g,g':J  {}\mrightarrow{}\mBbbR{}.
    (iproper(J)
    {}\mRightarrow{}  maps-compact(I;J;x.f[x])
    {}\mRightarrow{}  f[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  f'[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  g'[x]  (proper)continuous  for  x  \mmember{}  J
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  I
    {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.g'[x]  on  J
    {}\mRightarrow{}  d(g[f[x]])/dx  =  \mlambda{}x.g'[f[x]]  *  f'[x]  on  I)



Date html generated: 2019_10_30-AM-09_06_22
Last ObjectModification: 2018_11_13-AM-11_06_33

Theory : reals


Home Index