Nuprl Lemma : implies_weakening_uimplies
∀[P,Q:ℙ]. (Q supposing P
⇒ {P
⇒ Q})
Proof
Definitions occuring in Statement :
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
implies: P
⇒ Q
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
isect_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
lambdaFormation,
sqequalHypSubstitution,
independent_isectElimination,
thin,
hypothesis,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
isectElimination,
cumulativity,
lambdaEquality,
Error :inhabitedIsType,
Error :universeIsType,
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}]. (Q supposing P {}\mRightarrow{} \{P {}\mRightarrow{} Q\})
Date html generated:
2019_06_20-AM-11_14_03
Last ObjectModification:
2018_09_26-AM-10_41_48
Theory : core_2
Home
Index