Nuprl Lemma : proper-continuous_wf

[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] (proper)continuous for x ∈ I ∈ ℙ)


Proof




Definitions occuring in Statement :  proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T
Definitions unfolded in proof :  proper-continuous: f[x] (proper)continuous for x ∈ I uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q prop: so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q so_apply: x[s] rfun: I ⟶ℝ nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  all_wf nat_plus_wf icompact_wf i-approx_wf iproper_wf sq_exists_wf real_wf rless_wf int-to-real_wf i-member_wf rleq_wf rabs_wf rsub_wf i-member-approx rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rfun_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis productEquality hypothesisEquality because_Cache lambdaEquality lambdaFormation setElimination rename natural_numberEquality functionEquality applyEquality productElimination dependent_functionElimination independent_functionElimination dependent_set_memberEquality independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  (proper)continuous  for  x  \mmember{}  I  \mmember{}  \mBbbP{})



Date html generated: 2016_10_26-AM-09_43_19
Last ObjectModification: 2016_08_23-PM-05_10_30

Theory : reals


Home Index