Nuprl Lemma : proper-continuous-implies
∀[I:Interval]. ∀[f:I ⟶ℝ].
  (f[x] (proper)continuous for x ∈ I
  
⇒ (∀m:ℕ+. (icompact(i-approx(I;m)) 
⇒ iproper(i-approx(I;m)) 
⇒ f[x] continuous for x ∈ i-approx(I;m))))
Proof
Definitions occuring in Statement : 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
continuous: f[x] continuous for x ∈ I
, 
icompact: icompact(I)
, 
rfun: I ⟶ℝ
, 
i-approx: i-approx(I;n)
, 
iproper: iproper(I)
, 
interval: Interval
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
member: t ∈ T
, 
and: P ∧ Q
, 
prop: ℙ
, 
continuous: f[x] continuous for x ∈ I
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
top: Top
Lemmas referenced : 
icompact_wf, 
i-approx_wf, 
iproper_wf, 
set_wf, 
nat_plus_wf, 
proper-continuous_wf, 
i-member_wf, 
real_wf, 
rfun_wf, 
interval_wf, 
i-approx-approx
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality, 
hypothesisEquality, 
independent_pairFormation, 
hypothesis, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].
    (f[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}
                (icompact(i-approx(I;m))
                {}\mRightarrow{}  iproper(i-approx(I;m))
                {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  i-approx(I;m))))
Date html generated:
2016_10_26-AM-09_43_29
Last ObjectModification:
2016_09_05-AM-10_03_16
Theory : reals
Home
Index