Nuprl Lemma : proper-continuous-implies

[I:Interval]. ∀[f:I ⟶ℝ].
  (f[x] (proper)continuous for x ∈ I
   (∀m:ℕ+(icompact(i-approx(I;m))  iproper(i-approx(I;m))  f[x] continuous for x ∈ i-approx(I;m))))


Proof




Definitions occuring in Statement :  proper-continuous: f[x] (proper)continuous for x ∈ I continuous: f[x] continuous for x ∈ I icompact: icompact(I) rfun: I ⟶ℝ i-approx: i-approx(I;n) iproper: iproper(I) interval: Interval nat_plus: + uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] proper-continuous: f[x] (proper)continuous for x ∈ I member: t ∈ T and: P ∧ Q prop: continuous: f[x] continuous for x ∈ I so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ top: Top
Lemmas referenced :  icompact_wf i-approx_wf iproper_wf set_wf nat_plus_wf proper-continuous_wf i-member_wf real_wf rfun_wf interval_wf i-approx-approx
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality hypothesisEquality independent_pairFormation hypothesis productEquality cut introduction extract_by_obid isectElimination sqequalRule lambdaEquality applyEquality setElimination rename setEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].
    (f[x]  (proper)continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}
                (icompact(i-approx(I;m))
                {}\mRightarrow{}  iproper(i-approx(I;m))
                {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  i-approx(I;m))))



Date html generated: 2016_10_26-AM-09_43_29
Last ObjectModification: 2016_09_05-AM-10_03_16

Theory : reals


Home Index