Nuprl Lemma : Inorm-bound

[I:{I:Interval| icompact(I)} ]. ∀[f:I ⟶ℝ]. ∀[mc:f[x] continuous for x ∈ I]. ∀[x:{r:ℝr ∈ I} ].  (|f[x]| ≤ ||f[x]||_I)


Proof




Definitions occuring in Statement :  Inorm: ||f[x]||_I continuous: f[x] continuous for x ∈ I icompact: icompact(I) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rleq: x ≤ y rabs: |x| real: uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] prop: subtype_rel: A ⊆B Inorm: ||f[x]||_I sup: sup(A) b upper-bound: A ≤ b sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__i-member rset-member-rrange continuous-abs-subtype range-sup-property icompact_wf interval_wf rfun_wf continuous_wf set_wf nat_plus_wf rabs_wf i-member_wf real_wf Inorm_wf rsub_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache lemma_by_obid isectElimination applyEquality setEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_functionElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[mc:f[x]  continuous  for  x  \mmember{}  I].  \mforall{}[x:\{r:\mBbbR{}|  r  \mmember{}  I\}  ].
    (|f[x]|  \mleq{}  ||f[x]||\_I)



Date html generated: 2016_05_18-AM-09_17_20
Last ObjectModification: 2016_01_17-AM-02_40_10

Theory : reals


Home Index