Nuprl Lemma : differentiable-continuous
∀I:Interval. ∀f,g:I ⟶ℝ.
  ((∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (g[x] = g[y]))) 
⇒ d(f[x])/dx = λx.g[x] on I 
⇒ f[x] (proper)continuous for x ∈ I)
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
label: ...$L... t
, 
proper-continuous: f[x] (proper)continuous for x ∈ I
, 
nat_plus: ℕ+
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
subinterval: I ⊆ J 
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
r-ap: f(x)
, 
exists: ∃x:A. B[x]
, 
sup: sup(A) = b
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
le: A ≤ B
, 
rge: x ≥ y
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
upper-bound: A ≤ b
, 
derivative: d(f[x])/dx = λz.g[z] on I
, 
less_than: a < b
, 
sq_exists: ∃x:A [B[x]]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rneq: x ≠ y
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
rless: x < y
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
function-proper-continuous, 
i-member_wf, 
real_wf, 
derivative_wf, 
all_wf, 
req_wf, 
rfun_wf, 
interval_wf, 
i-approx-is-subinterval, 
less_than_wf, 
sup-range, 
i-approx_wf, 
icompact_wf, 
rabs_wf, 
subtype_rel_sets, 
continuous-abs, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
proper-continuous-implies, 
sq_stable__icompact, 
sq_stable__iproper, 
r-archimedean, 
upper-bound_functionality, 
rrange_wf, 
int-to-real_wf, 
upper-bound_wf, 
nat_plus_wf, 
iproper_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
rleq-int, 
nat_properties, 
nat_plus_properties, 
sq_stable__and, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
rset-member-rrange, 
rmul_wf, 
rsub_wf, 
zero-rleq-rabs, 
rleq_wf, 
rleq_weakening_equal, 
rleq_functionality, 
rabs-rmul, 
req_weakening, 
rleq_functionality_wrt_implies, 
rmul_functionality_wrt_rleq2, 
r-triangle-inequality, 
less_than'_wf, 
radd_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
equal_wf, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
rinv_wf2, 
itermMultiply_wf, 
rleq_weakening, 
radd_functionality_wrt_rleq, 
rmul_functionality, 
rabs-difference-symmetry, 
rabs_functionality, 
req_transitivity, 
radd_functionality, 
rinv1, 
rmul-identity1, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
req_inversion, 
radd-int, 
rmul-distrib2, 
rmin_wf, 
mul_bounds_1b, 
less-iff-le, 
rmin_strict_ub, 
rless-int-fractions2, 
mul_nat_plus, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_term_value_mul_lemma, 
intformand_wf, 
int_formula_prop_and_lemma, 
rmin_ub, 
rneq_functionality, 
rmul-int, 
rneq-int, 
int_entire_a, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
equal-wf-T-base, 
rdiv_functionality, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
rmul-neq-zero, 
rleq-implies-rleq, 
rmul_preserves_rleq2, 
rleq_weakening_rless, 
rmul-one, 
rinv-of-rmul, 
rmul-rinv, 
rinv-as-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesis, 
isectElimination, 
setEquality, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
productEquality, 
addEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
approximateComputation, 
int_eqEquality, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
axiomEquality, 
inrFormation, 
dependent_set_memberFormation, 
multiplyEquality, 
baseApply, 
closedConclusion, 
universeEquality
Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g[x]  on  I
    {}\mRightarrow{}  f[x]  (proper)continuous  for  x  \mmember{}  I)
Date html generated:
2018_05_22-PM-02_44_44
Last ObjectModification:
2017_10_21-PM-07_20_16
Theory : reals
Home
Index