Nuprl Lemma : differentiable-continuous

I:Interval. ∀f,g:I ⟶ℝ.
  ((∀x,y:{x:ℝx ∈ I} .  ((x y)  (g[x] g[y])))  d(f[x])/dx = λx.g[x] on  f[x] (proper)continuous for x ∈ I)


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I proper-continuous: f[x] (proper)continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval req: y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] uall: [x:A]. B[x] prop: label: ...$L... t proper-continuous: f[x] (proper)continuous for x ∈ I nat_plus: + and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a subinterval: I ⊆  sq_stable: SqStable(P) squash: T r-ap: f(x) exists: x:A. B[x] sup: sup(A) b rev_uimplies: rev_uimplies(P;Q) nat: le: A ≤ B rge: x ≥ y guard: {T} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) cand: c∧ B subtract: m top: Top less_than': less_than'(a;b) true: True ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) upper-bound: A ≤ b derivative: d(f[x])/dx = λz.g[z] on I less_than: a < b sq_exists: x:A [B[x]] rleq: x ≤ y rnonneg: rnonneg(x) rneq: x ≠ y rdiv: (x/y) req_int_terms: t1 ≡ t2 rless: x < y nequal: a ≠ b ∈ 
Lemmas referenced :  function-proper-continuous i-member_wf real_wf derivative_wf all_wf req_wf rfun_wf interval_wf i-approx-is-subinterval less_than_wf sup-range i-approx_wf icompact_wf rabs_wf subtype_rel_sets continuous-abs subtype_rel_dep_function subtype_rel_self set_wf proper-continuous-implies sq_stable__icompact sq_stable__iproper r-archimedean upper-bound_functionality rrange_wf int-to-real_wf upper-bound_wf nat_plus_wf iproper_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel rleq-int nat_properties nat_plus_properties sq_stable__and decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf rset-member-rrange rmul_wf rsub_wf zero-rleq-rabs rleq_wf rleq_weakening_equal rleq_functionality rabs-rmul req_weakening rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 r-triangle-inequality less_than'_wf radd_wf rdiv_wf rless-int rless_wf equal_wf itermSubtract_wf req-iff-rsub-is-0 rinv_wf2 itermMultiply_wf rleq_weakening radd_functionality_wrt_rleq rmul_functionality rabs-difference-symmetry rabs_functionality req_transitivity radd_functionality rinv1 rmul-identity1 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma req_inversion radd-int rmul-distrib2 rmin_wf mul_bounds_1b less-iff-le rmin_strict_ub rless-int-fractions2 mul_nat_plus intformless_wf int_formula_prop_less_lemma int_term_value_mul_lemma intformand_wf int_formula_prop_and_lemma rmin_ub rneq_functionality rmul-int rneq-int int_entire_a intformeq_wf int_formula_prop_eq_lemma equal-wf-base int_subtype_base equal-wf-T-base rdiv_functionality squash_wf true_wf iff_weakening_equal rmul-neq-zero rleq-implies-rleq rmul_preserves_rleq2 rleq_weakening_rless rmul-one rinv-of-rmul rmul-rinv rinv-as-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality hypothesis isectElimination setEquality independent_functionElimination because_Cache functionEquality natural_numberEquality productElimination independent_isectElimination imageMemberEquality baseClosed imageElimination dependent_pairFormation productEquality addEquality unionElimination independent_pairFormation voidElimination isect_memberEquality voidEquality intEquality minusEquality approximateComputation int_eqEquality inlFormation equalityTransitivity equalitySymmetry independent_pairEquality axiomEquality inrFormation dependent_set_memberFormation multiplyEquality baseApply closedConclusion universeEquality

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g[x]  on  I
    {}\mRightarrow{}  f[x]  (proper)continuous  for  x  \mmember{}  I)



Date html generated: 2018_05_22-PM-02_44_44
Last ObjectModification: 2017_10_21-PM-07_20_16

Theory : reals


Home Index