Nuprl Lemma : r-archimedean
∀x:ℝ. ∃n:ℕ. ((r(-n) ≤ x) ∧ (x ≤ r(n)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
minus: -n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
cand: A c∧ B
Lemmas referenced : 
canonical-bound-property, 
canonical-bound_wf, 
subtype_rel_set, 
int_upper_wf, 
nat_wf, 
all_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
int_upper_subtype_nat, 
false_wf, 
rleq_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
isectElimination, 
applyEquality, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
multiplyEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
productEquality, 
minusEquality, 
because_Cache
Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  ((r(-n)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r(n)))
Date html generated:
2017_10_03-AM-08_55_13
Last ObjectModification:
2017_07_03-PM-05_27_11
Theory : reals
Home
Index