Nuprl Lemma : r-archimedean

x:ℝ. ∃n:ℕ((r(-n) ≤ x) ∧ (x ≤ r(n)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q minus: -n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] real: nat: nat_plus: + int_upper: {i...} so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: cand: c∧ B
Lemmas referenced :  canonical-bound-property canonical-bound_wf subtype_rel_set int_upper_wf nat_wf all_wf nat_plus_wf le_wf absval_wf int_upper_subtype_nat false_wf rleq_wf int-to-real_wf real_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination dependent_pairFormation isectElimination applyEquality natural_numberEquality sqequalRule lambdaEquality setElimination rename multiplyEquality independent_isectElimination dependent_set_memberEquality independent_pairFormation productEquality minusEquality because_Cache

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  ((r(-n)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r(n)))



Date html generated: 2017_10_03-AM-08_55_13
Last ObjectModification: 2017_07_03-PM-05_27_11

Theory : reals


Home Index