Nuprl Lemma : rinv1
rinv(r1) = r1
Proof
Definitions occuring in Statement : 
rinv: rinv(x), 
req: x = y, 
int-to-real: r(n), 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
rnonzero: rnonzero(x), 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
absval: |i|, 
int-to-real: r(n), 
subtype_rel: A ⊆r B, 
real: ℝ, 
nat: ℕ, 
uimplies: b supposing a, 
uiff: uiff(P;Q)
Lemmas referenced : 
rmul-rinv1, 
int-to-real_wf, 
less_than_wf, 
absval_wf, 
real_wf, 
nat_wf, 
rmul_wf, 
rinv_wf, 
req_functionality, 
rmul-one-both, 
req_weakening
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
rinv(r1)  =  r1
Date html generated:
2017_10_02-PM-07_17_28
Last ObjectModification:
2017_04_06-AM-00_28_07
Theory : reals
Home
Index