Nuprl Lemma : rinv1

rinv(r1) r1


Proof




Definitions occuring in Statement :  rinv: rinv(x) req: y int-to-real: r(n) natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q rnonzero: rnonzero(x) exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: absval: |i| int-to-real: r(n) subtype_rel: A ⊆B real: nat: uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  rmul-rinv1 int-to-real_wf less_than_wf absval_wf real_wf nat_wf rmul_wf rinv_wf req_functionality rmul-one-both req_weakening
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin natural_numberEquality hypothesis independent_functionElimination dependent_pairFormation dependent_set_memberEquality sqequalRule independent_pairFormation imageMemberEquality hypothesisEquality baseClosed applyEquality lambdaEquality setElimination rename because_Cache independent_isectElimination productElimination

Latex:
rinv(r1)  =  r1



Date html generated: 2017_10_02-PM-07_17_28
Last ObjectModification: 2017_04_06-AM-00_28_07

Theory : reals


Home Index