Nuprl Lemma : rinv_wf
∀[x:ℝ]. (rnonzero(x) 
⇒ (rinv(x) ∈ ℝ))
Proof
Definitions occuring in Statement : 
rinv: rinv(x)
, 
rnonzero: rnonzero(x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
rinv: rinv(x)
, 
rnonzero: rnonzero(x)
, 
real: ℝ
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
squash: ↓T
, 
nat: ℕ
, 
true: True
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
le: A ≤ B
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
has-value: (a)↓
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
rnonzero_wf, 
real_wf, 
bool_wf, 
assert_wf, 
int_upper_wf, 
exists_wf, 
squash_wf, 
mu-ge_wf, 
nat_wf, 
absval_wf, 
lt_int_wf, 
less_than_wf, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
false_wf, 
decidable__lt, 
int-value-type, 
value-type-has-value, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
le_wf, 
subtype_rel_sets, 
assert_of_lt_int, 
subtype_base_sq, 
set_subtype_base, 
istype-int, 
int_subtype_base, 
subtype_rel_sets_simple, 
istype-void, 
istype-less_than, 
istype-assert, 
istype-false, 
mu-ge-property, 
istype-int_upper, 
iff_weakening_uiff, 
int_seg_wf, 
rnonzero-lemma1, 
int_upper_properties, 
set-value-type, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
accelerate_wf, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_upper, 
nequal-le-implies, 
istype-le, 
multiply_nat_plus, 
add_nat_plus, 
mul-non-neg1, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
reg-seq-inv_wf, 
nat_plus_wf, 
subtype_rel_self, 
regular-int-seq_wf, 
nat_plus_properties, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
reg-seq-adjust_wf, 
mul_nat_plus, 
mul-associates, 
mul-swap, 
reg-seq-adjust-property, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
hypothesis, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
baseClosed, 
imageMemberEquality, 
intEquality, 
functionEquality, 
independent_isectElimination, 
imageElimination, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
voidEquality, 
isect_memberEquality, 
independent_functionElimination, 
voidElimination, 
lambdaFormation, 
independent_pairFormation, 
unionElimination, 
productElimination, 
dependent_set_memberEquality, 
callbyvalueReduce, 
int_eqEquality, 
approximateComputation, 
setEquality, 
dependent_pairFormation, 
instantiate, 
cumulativity, 
closedConclusion, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
equalityElimination, 
equalityIsType4, 
baseApply, 
promote_hyp, 
hypothesis_subsumption, 
multiplyEquality, 
equalityIsType1, 
productIsType, 
isectIsType, 
functionIsType, 
pointwiseFunctionality, 
addEquality
Latex:
\mforall{}[x:\mBbbR{}].  (rnonzero(x)  {}\mRightarrow{}  (rinv(x)  \mmember{}  \mBbbR{}))
Date html generated:
2019_10_16-PM-03_07_30
Last ObjectModification:
2018_11_13-AM-10_32_46
Theory : reals
Home
Index