Nuprl Lemma : rinv_wf

[x:ℝ]. (rnonzero(x)  (rinv(x) ∈ ℝ))


Proof




Definitions occuring in Statement :  rinv: rinv(x) rnonzero: rnonzero(x) real: uall: [x:A]. B[x] implies:  Q member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q rinv: rinv(x) rnonzero: rnonzero(x) real: prop: exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a squash: T nat: true: True less_than': less_than'(a;b) top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] and: P ∧ Q le: A ≤ B int_upper: {i...} nat_plus: + has-value: (a)↓ satisfiable_int_formula: satisfiable_int_formula(fmla) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  rnonzero_wf real_wf bool_wf assert_wf int_upper_wf exists_wf squash_wf mu-ge_wf nat_wf absval_wf lt_int_wf less_than_wf le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 false_wf decidable__lt int-value-type value-type-has-value int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le le_wf subtype_rel_sets assert_of_lt_int subtype_base_sq set_subtype_base istype-int int_subtype_base subtype_rel_sets_simple istype-void istype-less_than istype-assert istype-false mu-ge-property istype-int_upper iff_weakening_uiff int_seg_wf rnonzero-lemma1 int_upper_properties set-value-type eq_int_wf eqtt_to_assert assert_of_eq_int accelerate_wf eqff_to_assert bool_subtype_base bool_cases_sqequal assert-bnot neg_assert_of_eq_int upper_subtype_upper nequal-le-implies istype-le multiply_nat_plus add_nat_plus mul-non-neg1 intformeq_wf int_formula_prop_eq_lemma reg-seq-inv_wf nat_plus_wf subtype_rel_self regular-int-seq_wf nat_plus_properties multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma reg-seq-adjust_wf mul_nat_plus mul-associates mul-swap reg-seq-adjust-property mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution hypothesis universeIsType extract_by_obid isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality_alt dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType baseClosed imageMemberEquality intEquality functionEquality independent_isectElimination imageElimination lambdaEquality applyEquality natural_numberEquality because_Cache voidEquality isect_memberEquality independent_functionElimination voidElimination lambdaFormation independent_pairFormation unionElimination productElimination dependent_set_memberEquality callbyvalueReduce int_eqEquality approximateComputation setEquality dependent_pairFormation instantiate cumulativity closedConclusion dependent_pairFormation_alt isect_memberEquality_alt dependent_set_memberEquality_alt applyLambdaEquality equalityElimination equalityIsType4 baseApply promote_hyp hypothesis_subsumption multiplyEquality equalityIsType1 productIsType isectIsType functionIsType pointwiseFunctionality addEquality

Latex:
\mforall{}[x:\mBbbR{}].  (rnonzero(x)  {}\mRightarrow{}  (rinv(x)  \mmember{}  \mBbbR{}))



Date html generated: 2019_10_16-PM-03_07_30
Last ObjectModification: 2018_11_13-AM-10_32_46

Theory : reals


Home Index