Nuprl Lemma : reg-seq-inv_wf

[b:ℕ+]. ∀[x:{f:ℕ+ ⟶ ℤb-regular-seq(f)} ]. ∀[k:ℕ+].
  reg-seq-inv(x) ∈ {f:ℕ+ ⟶ ℤ((k k) 1)-regular-seq(f)}  supposing ∀m:ℕ+((2 m) ≤ (k |x m|))


Proof




Definitions occuring in Statement :  reg-seq-inv: reg-seq-inv(x) regular-int-seq: k-regular-seq(f) absval: |i| nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] multiply: m add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q false: False decidable: Dec(P) or: P ∨ Q nat: so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: nat_plus: + satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) reg-seq-inv: reg-seq-inv(x) nequal: a ≠ b ∈  regular-int-seq: k-regular-seq(f) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B int_nzero: -o sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) ge: i ≥  subtract: m absval: |i|
Lemmas referenced :  decidable__not decidable__equal_int nat_plus_wf subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base absval-non-neg equal_wf squash_wf true_wf absval_pos nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf iff_weakening_equal itermMultiply_wf intformless_wf int_term_value_mul_lemma int_formula_prop_less_lemma equal-wf-T-base regular-int-seq_wf all_wf absval_wf set_wf absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf decidable__lt eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot itermMinus_wf int_term_value_minus_lemma mul_cancel_in_le subtract_wf absval_nat_plus int_entire_a absval_mul multiply_nat_plus add_nat_plus multiply_nat_wf nat_plus_subtype_nat left_mul_subtract_distrib div_rem_sum2 nequal_wf rem_bounds_absval sq_stable__less_than le_functionality le_weakening add_functionality_wrt_le int-triangle-inequality mul-distributes minus-add add-associates minus-one-mul mul-swap mul-commutes mul-associates one-mul add-swap itermSubtract_wf int_term_value_subtract_lemma add_functionality_wrt_eq mul_bounds_1a multiply_functionality_wrt_le false_wf itermAdd_wf int_term_value_add_lemma multiply-is-int-iff absval_sym nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination because_Cache independent_functionElimination dependent_functionElimination applyEquality functionExtensionality hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate cumulativity independent_isectElimination sqequalRule intEquality lambdaEquality dependent_set_memberEquality imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed productElimination divideEquality multiplyEquality addEquality axiomEquality functionEquality minusEquality equalityElimination lessCases sqequalAxiom promote_hyp remainderEquality applyLambdaEquality baseApply closedConclusion

Latex:
\mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[x:\{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  b-regular-seq(f)\}  ].  \mforall{}[k:\mBbbN{}\msupplus{}].
    reg-seq-inv(x)  \mmember{}  \{f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}|  b  *  ((k  *  k)  +  1)-regular-seq(f)\}    supposing  \mforall{}m:\mBbbN{}\msupplus{}.  ((2  *  m)  \mleq{}  (k  *  |\000Cx  m|))



Date html generated: 2017_10_02-PM-07_16_26
Last ObjectModification: 2017_07_28-AM-07_20_56

Theory : reals


Home Index