Step
*
of Lemma
reg-seq-inv_wf
∀[b:ℕ+]. ∀[x:{f:ℕ+ ⟶ ℤ| b-regular-seq(f)} ]. ∀[k:ℕ+].
reg-seq-inv(x) ∈ {f:ℕ+ ⟶ ℤ| b * ((k * k) + 1)-regular-seq(f)} supposing ∀m:ℕ+. ((2 * m) ≤ (k * |x m|))
BY
{ ((Auto
THEN D 2
THEN (Assert ∀m:ℕ+. (¬((x m) = 0 ∈ ℤ)) BY
(Auto
THEN SupposeNot
THEN (InstHyp [⌜m⌝] (-3)⋅ THENA Auto)
THEN (D 0 THENA Auto)
THEN Subst ⌜|x m| ~ 0⌝ (-2)⋅
THEN Auto)))
THEN (Assert reg-seq-inv(x) ∈ ℕ+ ⟶ ℤ BY
ProveWfLemma)
THEN MemTypeCD
THEN Auto
THEN D 0
THEN Auto) }
1
1. b : ℕ+
2. x : ℕ+ ⟶ ℤ
3. b-regular-seq(x)
4. k : ℕ+
5. ∀m:ℕ+. ((2 * m) ≤ (k * |x m|))
6. ∀m:ℕ+. (¬((x m) = 0 ∈ ℤ))
7. reg-seq-inv(x) ∈ ℕ+ ⟶ ℤ
8. n : ℕ+
9. m : ℕ+
⊢ |(m * (reg-seq-inv(x) n)) - n * (reg-seq-inv(x) m)| ≤ ((2 * b * ((k * k) + 1)) * (n + m))
Latex:
Latex:
\mforall{}[b:\mBbbN{}\msupplus{}]. \mforall{}[x:\{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| b-regular-seq(f)\} ]. \mforall{}[k:\mBbbN{}\msupplus{}].
reg-seq-inv(x) \mmember{} \{f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}| b * ((k * k) + 1)-regular-seq(f)\} supposing \mforall{}m:\mBbbN{}\msupplus{}. ((2 * m) \mleq{} (k * |\000Cx m|))
By
Latex:
((Auto
THEN D 2
THEN (Assert \mforall{}m:\mBbbN{}\msupplus{}. (\mneg{}((x m) = 0)) BY
(Auto
THEN SupposeNot
THEN (InstHyp [\mkleeneopen{}m\mkleeneclose{}] (-3)\mcdot{} THENA Auto)
THEN (D 0 THENA Auto)
THEN Subst \mkleeneopen{}|x m| \msim{} 0\mkleeneclose{} (-2)\mcdot{}
THEN Auto)))
THEN (Assert reg-seq-inv(x) \mmember{} \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{} BY
ProveWfLemma)
THEN MemTypeCD
THEN Auto
THEN D 0
THEN Auto)
Home
Index