Nuprl Lemma : reg-seq-adjust-property

[n:ℕ+]. ∀[x:ℝ].  ∀m:ℕ+(m ≤ (n |reg-seq-adjust(n;x) m|)) supposing 5 ≤ |x n|


Proof




Definitions occuring in Statement :  reg-seq-adjust: reg-seq-adjust(n;x) real: absval: |i| nat_plus: + uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] reg-seq-adjust: reg-seq-adjust(n;x) member: t ∈ T nat_plus: + less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: real: subtype_rel: A ⊆B nat: sq_stable: SqStable(P) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) absval: |i| decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  sq_stable__le absval_wf top_wf less_than_wf nat_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermMultiply_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot rnonzero-lemma1 nat_plus_wf le_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis multiplyEquality because_Cache lessCases independent_pairFormation baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality isect_memberEquality voidElimination voidEquality imageElimination productElimination independent_functionElimination applyEquality lambdaEquality unionElimination equalityElimination independent_isectElimination dependent_functionElimination approximateComputation dependent_pairFormation int_eqEquality intEquality promote_hyp instantiate

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].    \mforall{}m:\mBbbN{}\msupplus{}.  (m  \mleq{}  (n  *  |reg-seq-adjust(n;x)  m|))  supposing  5  \mleq{}  |x  n|



Date html generated: 2019_10_16-PM-03_07_23
Last ObjectModification: 2018_08_20-PM-09_45_14

Theory : reals


Home Index