Nuprl Lemma : reg-seq-adjust-property
∀[n:ℕ+]. ∀[x:ℝ].  ∀m:ℕ+. (m ≤ (n * |reg-seq-adjust(n;x) m|)) supposing 5 ≤ |x n|
Proof
Definitions occuring in Statement : 
reg-seq-adjust: reg-seq-adjust(n;x)
, 
real: ℝ
, 
absval: |i|
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
reg-seq-adjust: reg-seq-adjust(n;x)
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
absval: |i|
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
Lemmas referenced : 
sq_stable__le, 
absval_wf, 
top_wf, 
less_than_wf, 
nat_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
rnonzero-lemma1, 
nat_plus_wf, 
le_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
multiplyEquality, 
because_Cache, 
lessCases, 
independent_pairFormation, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
productElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
promote_hyp, 
instantiate
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbR{}].    \mforall{}m:\mBbbN{}\msupplus{}.  (m  \mleq{}  (n  *  |reg-seq-adjust(n;x)  m|))  supposing  5  \mleq{}  |x  n|
Date html generated:
2019_10_16-PM-03_07_23
Last ObjectModification:
2018_08_20-PM-09_45_14
Theory : reals
Home
Index